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1) AIM OF THE DOCUMENT  

The aim of the Work Package 12 is to assess the accuracy of multidisciplinary derived models 

in order to improve the identification of markers of outcome prediction and risk stratification, and 

thus to derive and evaluate personalized treatment models.  

The goal is to validate the computational models to assure that they can be personalized by 

adapting the parameters to the integrated data of a specific patient and to improve the current 

knowledge and understanding of the disease by simulating different aspects on the evolution of a 

disease. In addition it also aims at verifying the accuracy of the insights of the effect of a specific 

therapeutic intervention; being this either pharmacological, behavioral or surgical.  

Clinical validation of the models, as stated in the description of work, will be an ongoing 

process which benefits from the use of the models in different clinical settings thus incresing the 

number of clinical observations and improving the stability of the clinically derived model. The final 

aim of WP-12 is to assure that the data repository will be in the condition to be continuously improved, 

in order to assure the accuracy and stability of the derived models and result into integrated clinical 

workflows leading to personalized treatment models. 

In D12.1 we have described in detail the validation methodology-outline, which has started in 

the second year of the project and detailed in the D12.1.1. 

Given the significant heterogeneity of the different clinical areas and the resulting differences in 

model definition and expected abilities, the second year validation process required that numerous 

partners, from both the clinical and the technical areas, proceed on a cogent and well defined 

validation process. Accordingly, the validation decribed in the present document strictly evolves in 

parallelel to model production, in a continuous effort of pairing model advancement to validation 

and clinical utility.  

As stated, the current validation process does not seek to override existing clinical and 

technical procedures, with specific regard to the models validation methodos developed by each of 

the technological partners.  

The aim of the present document is to report on advancement and current status of the clinical 

validation process for the four disease areas. 
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2) Validation process for each disease area 

 

2.1. Validation for Cardiomyopathies models (WP3-WP8) 

2.1.1 Evaluation of the whole body circulation model 

 

In the third year of the project we have significantly extended the personalization algorithm 

of the lumped parameter whole body circulation model. Besides the previously used standard set of 

objectives (12 objectives in total for systemic and pulmonary circulation based on systolic, diastolic 

and average arterial/venous aortic pressure, interval of time during which the aortic/pulmonary valve 

is open, and maximum and minimum left/right ventricular volume), we introduced new advanced 

objectives based on slopes and intervals of time extracted from the pressure and volume profiles. 

Hence, the number of objectives was extended from 12 to 28. For further details we refer to the 

concomitant third annual report of WP8. 

The lumped parameter whole body circulation model and the personalization approach were 

validated based on the data extracted from 10 patients, both at baseline and at follow-up. For the 

baseline configuration we have used all types of information that were available (non-imaging data: 

blood pressure and heart rate, imaging: left ventricular volume), whereas for the follow-up 

configuration we have only used the new heart rate value. Hence, the whole body circulation model 

was fully personalized at baseline, and then for the follow-up computations the personalized 

parameter values were reused and only the heart rate was modified. The rationale behind this 

approach is: 

- Once the model is personalized for the baseline state of the patient, the clinician could test 

different what-if scenarios, by setting different values of the heart rate, so as to determine e.g. 

how the ejection fraction of the patient would change (these changes in heart rate could be 

induced by different medication therapies); 

- The follow-up heart rate could be measured by the patient himself, using for example a 

smartphone, and then used to estimate new values of measures of interest, like the ejection 

fraction. 
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2.1.1.a Results at baseline 

In the following section we present the results obtained for the personalized blood flow 

computations at baseline. Since the ejection fraction was determined by the clinicians, we have used 

as objectives the maximum left ventricular volume determined from the medical imaging data, and 

the target value of the minimum left ventricular volume was computed from the maximum left 

ventricular volume and the clinically provided ejection fraction. In Figure 1 is displayed a comparison 

of measured and computed arterial systolic, diastolic and mean pressure, maximum and minimum left 

ventricular volume, and the left ventricular ejection fraction. The agreement between the measured 

quantities and their computed counterparts is very good, with no major outliers. The following Table 

further displays the correlation and the mean absolute differences between computed and measured 

quantities: the results further underline that the model was successfully personalized.
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Figure 1: Scatter plots of computed versus measured values of arterial systolic, diastolic and mean pressure, 

maximum and minimum left ventricular volume, and left ventricular ejection fraction at baseline. 

 

Table: Correlation and mean absolute difference between computed and measured values of arterial systolic, 

diastolic and mean pressure, maximum and minimum left ventricular volume, and ejection fraction. 

Quantity BPsyst BPdiast BPmean LVMax LVMin LV EF 

Correlation 0.962 0.939 0.998 1.0 1.0 1.0 

Mean abs. Diff. 2.934 

mmHg 

2.928 

mmHg 

0.235 

mmHg 

0.29 ml 0.16 ml 0.02 % 

 

Results at follow-up 

In the following section we present the results obtained for the personalized blood flow computations 

at follow-up. As mentioned above, all personalized parameters, determined for the baseline 

computations, were maintained constant and only the heart rate was modified.  Hence, no further 

personalization with respect to any objective value was performed. 
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Figure 2 displays a comparison of measured and computed ejection fraction. Overall, the 

computational model is able to predict well the ejection fraction at follow-up, with a correlation of 

0.87 and a mean absolute difference of 4.58%.  

A more detailed analysis reveals that the ejection fraction has changed between baseline and follow-

up exam for seven out of the ten patients included in the study. Out of these seven patients, the model 

has predicted correctly the direction of change in ejection fraction for five patients. 

 

Figure 2: Scatter plots of computed versus measured values left ventricular ejection fraction at follow-up. 

 

The present follow-up study only takes into account the long-term effect of heart rate on the ejection 

fraction. There are other factors which may lead to a change of the ejection fraction, like disease 

progression, change of the state of the patient between baseline and follow-up, etc. Furthermore, 
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since a lumped parameter model was employed, which provides results in a timeframe of minutes, 

biomechanical, electrophysiological and hemodynamic properties, which influence the ejection 

fraction, have only been modelled at a reduced scale. A full scale modelling may further improve 

results. 

2.1.2 Evaluation of the electro-mechanical cardiac modelling pipeline 

The fully-automatic electro-mechanical simulation and personalization pipeline (WP8) has been 

finalized during the second year of the project. A major effort in year three was on extensive patient 

processing to test its robustness against the different patient phenotypes, degrees of pathologies, and 

varying data quality. The results based on the first 35 autonomously personalized MD-Paedigree 

patients, including patients from all three clinical centres (OPBG: 17, UCL: 17, DHZB: 1), indicated good 

versatility of the proposed methods. For technical details we refer to the concomitant annual report 

of WP8. 

In order to validate the modelling tools and personalization pipeline, and to assess the utility of the 

resulting personalized models, an important step is to test the models’ ability to accurately capture 

the patients’ physiologies at baseline. To this end, we compared the personalized models and their 

outputs to the available clinical data, both quantitatively (stroke volume, ejection fraction, ECG 

features, etc.) and qualitatively (e.g. cardiac motion observed in cine MRI versus simulated motion). 

2.1.2.a Quantitative Evaluation 

First, we assessed the quantitative goodness of fit between personalized model outputs and measured 

data on a case-by-case basis and at population level. To this end, we compared various clinically 

significant quantities of interest for all processed patients, see  

Table 1 and the plots in Figure 4: 
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Figure 4: Measured (x-axis) versus computed (y-axis) quantities of interest. First row depicts quantities related 

to EP derived from 12-lead ECG and the personalized model, respectively.  The second row focuses on 

important markers derived from the coupled electro-mechanical model (y-axis) and compares them against 

measurements derived from cine MRI (x-axis).     

Table 1: Mean misfit and standard deviation: measured versus computed quantities of interest. 

Quantity QRS duration Electrical axis QT duration Ejection fraction Stroke 

volume 

Mean 0.35 ms 6.61 deg 2.93 ms 1.61 % 3.49 mL 

Std.dev. 0.51 ms 16.1 deg 1.62 ms 1.14 % 2.22 mL 

 

As one can see, the agreement between computed and measured values is high and the degree of 

misfit is mostly below clinical variability. Some outliers (although not severe) can be observed for the 
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electrical axis, which we are planning to investigate in the future. Potential reasons include failure of 

a personalization component or modelling assumptions that may be invalid for a subset of the 

patients.  

2.1.2.b Qualitative Evaluation 

The quantitative analysis above gives crucial clues on model performance, yet it does not cover the 

complete spectrum of information provided by the imaging data and the models. For instance, even 

when cardiac dynamics is captured perfectly at a global scale (e.g. stroke volume), the dynamic, time- 

and regionally-varying motion might not match well. In an effort to facilitate the review of the 

modelling performance in this regard, we developed an intuitive web-based platform, called 

CaSiReView, with the goal to provide a light-weight, yet comprehensive overview of the 

personalization results with automatic comparison to the available data (see WP8 annual report for 

more details). A screenshot of the prototype and example qualitative comparisons results for some 

patients is shown in Figure 5. 

  

 

 

Figure 5: Top: Measured (black) versus computed (red) left ventricular volume curves for two patients 

indicating excellent global volume fit over time (2 heart cycles). Bottom left: Personalized model overlaid on 

baseline cine MRI data for one patient. Bottom right: Screenshot of CaSiReView, the tool which was developed 
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to generate these case-based reviews (including quantitative and qualitative results with plots and videos) for 

evaluation and validation purposes. 

The majority of models match very well to the available baseline data, but in some cases we observed 

discrepancies in regional motion patterns. We will investigate those cases individually; however, to 

what extent such discrepancies will have an impact on the predictive power of the model is topic of 

our active research for the upcoming months. 

 

2.2 Validation for CVD risk in obesity models (WP4-WP9) 

2.2.1 Image-based patient characterization 

In the context of WP9, our first goal is to create multi-modal patient representations by extracting 

personalized patient parameters from different sources of information such as clinical, blood tests or 

imaging (e.g. MRI). Concerning parameters extracted from imaging, some characterizes the cardiac 

function and result from computational models developed within WP8 that are adapted to the heart 

of obese children, and others characterizes the fat distribution within the body using a dedicated MRI 

protocol. Concerning the models from WP8 adapted to the heart of obese children, validation is 

already being conducted within the context of WP8. Concerning the fat segmentation, the fully 

automatic active-shape-based liver method developed by Fraunhofer within WP9 has been evaluated 

on all available prospective UCL datasets. 

 

Figure 6: Image showing hepatic, internal and subcutaneous fat respectively in yellow, green and red. 
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Figure 7: Bland Altman plot of the first fully automatic calculated fat estimates using the tool 

provided by Fraunhofer compared to fully manual obtained fat estimates (ground-truth) created by 

UCL. Bland Altman plot comparing the fully automatic calculated SAT fat estimates provided by 

Fraunhofer with fully manual obtained SAT fat estimates (ground-truth) created by UCL. 

 

Figure 7: Bland Altman plot of the first fully automatic calculated fat estimates using the tool provided by 

Fraunhofer compared to fully manual obtained fat estimates (ground-truth) created by UCL. 

It can be seen that that the automatic calculated fat estimates contain a positive bias. The reason 

could be that for the manual estimated SAT fat the image data was cropped the lower leg below the 

knee and everything above the neck. Further, arms were manually removed from the data. In 

comparison, the automatic estimated SAT fat contains areas below the knee and above the neck. A 

further bias is introduced, because automatic arm removal failed sometimes and SAT segmentation 

of the lower leg produces over-segmentations which contain bony structures. 

2.2.2 Case-based reasoning 

Once a large dataset of patients with their corresponding multi-modal representation becomes 

available, case-based reasoning can be used to retrieve similar patients, perform stratification and risk 

assessment. To this end, we develop a prototype called CaseReasoner that consists in a learned 

representation for patient data, an associated similarity measure to compare patient representations 

and finally, a database of reference patients associated with relevant information for risk assessment. 



14 
 

In WP9, we propose to learn a multimodal low dimensional representation of patient data by 

extending deep generative models to the multi-modal context, either by using stacked RBMs or 

autoencoders. The resulting patient signatures can be binarized and compared using a Hamming 

distance. 

 

Figure 8 - Patient stratification using CaseReasoner 

To perform the technical validation of such case-based reasoning system, our plan is to conduct cross-

validation experiments using the different datasets we collect and process in the context of WP9. 

More precisely, we plan to perform multiple randomized 2-folds cross validation strategy. For each 

cross-validation run, the patient dataset is randomly split into 2 subsets or folds used as a training set 

and test set. Using the training set, the deep autoencoder is pre-trained without using any supervision 

or with supervision using pseudo-targets. Afterwards, either unsupervised or supervised back-

propagation can be additionally performed to fine-tune the network. In the supervised case, 

intermediate outcome information such as resting systolic blood pressure or glucose response to meal 

or intervention can be used to drive the back-propagation. Once encoded using this binary 

representation, a new incoming patient from the test set can be compared to all reference patients 

within the reference database by using Hamming distance. Based on the retrieved nearest neighbor 

patients, inference can be done by aggregating (intermediate) outcome information among the 

retrieved patients. Quality measures such as sensitivity and specificity can be then derived from such 

cross-validation. 
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Figure 9: Cross validation experiment for validating CaseReasoner 

 

At the present time, 46 patient data have been collected from OPBG (baseline), and 54 patient data 

from UCL for the prospective study, and additional 69 patients from a retrospective study. 9 patients 

from OPBG, 24 patients from UCL (prospective) and 20 patients from the retrospective study have 

been processed through the segmentation pipeline. The corresponding circulation models have been 

successfully computed for all patients from the prospective studies (9 + 24). The tool has been tested 

on the 9 + 24 patient data from the prospective studies. In a fraction of them, segmentation did not 

perform very well so that manual corrections and or recomputation are required. Resulting 

parameters needs to be formatted and analyzed prior integration within the file share.  

Clearly, the data collection and processing is not advanced enough to start with cross-validation 

experiments on real data. For this reason, we conducted first proof-of-concept experiments to analyze 

the properties of autoencoders for dimensionality reduction in a controlled setup by using synthetic 

data generated from Gaussian mixture models. Note that following experiments are also described in 

D9.3. 

First a simple three-layered auto-encoder with 3 neurons (input layer) – 2 neurons (hidden layer) – 3 

neurons (output layer) was considered. For the input and output neurons the linear activation was 

used, while for hidden ones the sigmoid activation was chosen. The whole network was trained using 

backpropagation and linear synthetic 3-D samples randomly generated from a multivariate Gaussian 

distribution, where all 3 clusters of points have been completely separated (Figure 10). The same 

dataset was used as an input for the PCA for a fairly comparison. The results are shown in Figure 11. 

Both methods were implemented to project one hundred of 3-D samples on 2-D space. 
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Figure 10: Samples drawn from a multivariate Gaussian distribution 

 

Figure 11:  Representation of the representative 2-D features (reduced feature sub-space) for PCA(left) and 

Auto-encoder (right). 

Since the purpose of dimensionality reduction is visualization of highly dimensional data we increased 

the input dimensionality to 10, resulting in a 10-D feature space. An auto-encoder was trained to 

reconstruct the input and return a 2-D feature space witch best represents the data (Figure 6).  

 

Figure 12: Representation of the selected 2-D features from the 10-D space (reduced feature sub-space) for 

PCA (left) and Auto-encoder (right). 
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Some other synthetic datasets were generated in which the mean and variance parameters of the 

Gaussian distribution were modified to capture the behavior of the auto-encoder in different 

situations (Figure 12). It has been shown that auto-encoders successfully projected the data onto a 

lower dimensional surface being able to find the directions along which the data has maximum 

variance. Traditionally, dimensionality reduction depended on linear methods such as PCA, which 

finds the directions of maximal variance in high-dimensional data. By selecting only those axes that 

have the largest variance, PCA aims to capture the directions that contain the most information about 

the inputs, so we can express as much as possible with a minimal number of dimensions. The linearity 

of PCA, however, places significant limitations on the kinds of feature dimensions that can be 

extracted. Autoencoders overcome these limitations by exploiting the inherent nonlinearity of neural 

networks. In future work, we plan to evaluate the abilities of autoencoders to cope with non-linearity, 

and this, on toy examples first.  
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Figure13: 3-D to 2-D reduction when the standard deviation was increase significantly along the y axis using 

PCA(bottom-left) and Auto-encoder (bottom-right). 

As mentioned previously, PCA being a linear method, it cannot cope with data showing non-linear 

structure. Another weakness of PCA, is when it it’s being applied to special classification problems. In 

the following example the classes are not distributed accordingly to the axis with the highest variance 

but the second highest variance. Since PCA chooses the highest variance direction, it clearly fails in 

this situation. As dimensionality reduction is an unsupervised task, we don’t provide any clues 

regarding the class labels and thus PCA cannot do better. 

 

Regarding the comparison between stacked auto-encoders and PCA we consider the following 2-D 

dataset, where samples are arranged following a circle path. Samples distributed on the circle are 

separated into two different classes, the red and the blue one respectively. First, we take a look at 

how well auto-encoders can reconstruct their original output compared to PCA using 2 dimensions. 

The reconstruction by the auto-encoder is visibly better than the PCA output, which is a very promising 

result. 
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Figure 14: Reconstruction by the auto-encoder 

 

 

2.3 Validation for the JIA models (WP5-WP10) 

2.3.1 Modelling status 

The models developed by WP10 are patient specific musculoskeletal models of the lower limb of 

children affected by juvenile idiopathic arthritis. Patient specific bone geometries and joint definitions 

are included in the computational models. In details, the operations involved in building the patient 

specific models are the following: 

1) Virtual palpation of anatomical landmarks (i.e. identification of points in a multimodal display 

interface where bone reconstructions and MRI are visible at the same time) on the bone 

geometrical models obtained from the MRI images. A software called NMSBuilder was used 

for this operation (Valente et al., 2014). 

2) Registration of a generic atlas of muscle attachments (Arnold et al. (2010) onto the patient 

specific bone geometries, using an affine transformation defined by the registration of specific 

bony landmarks (Ascani et al., 2015).  

3) Refinement, by manual adjustment based on the MRI images, of the muscle paths obtained 

by directly connecting the muscle attachments estimated at the previous step. 

4) Calculation of the inertial properties of each segment. 
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5) Creation of the joints connecting the bodies and definition of their axes using selected 

anatomical landmarks. 

6) Fusion of the ankle and foot model to a model of the lower limb. The latter model, according 

to the available data, can be either a generic scaled model or a patient specific model obtained 

from month-6 lower limb MRI data. 

7) Registration of the markers from the gait lab and the markers visible in the MRI scans in order 

to associate the gait data to the anatomical model. 

8) Simulations of the patient’s gait and estimation of the muscle and joint contact forces. 

Once the models have been produced (Figure 1 A), they can be used to simulate the patient’s gait 

employing the kinematics and kinetics data collected in the gait lab (Figure 1 B).  

A   B  

Figure 15: (A) Month-6 models with month-12 patient specific ankles, including virtual markers. (B) A frame of a 

simulated walking trial. 

 

2.3.2 Current application 

Currently, processed data were available for one single patient at the three time points specified in 

Table2. The biomechanical models were produced, gait simulations generated and contact forces 

acting at the ankle joint estimated (Figure 2) at all time steps. 
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Figure 16: Ankle joint contact forces estimated for right (red) and left (blue) side at the three 

considered timepoints. 

Calculated ankle contact forces were consistent with the clinical condition reported for the patient 

(severe disease involvement for both ankles at month-0, inactive disease at month-6 and bilateral 

involvement, but less severe than month-0, at month-12), highlighting a protective strategy of the 

patient towards the painful joints. 

These initial results are encouraging in the perspective of answering the first of the three questions of 

clinical interest.  

Table 2: Magnitude of the contact forces (mean±standard 

deviation) acting at the patient ankle at the three time points 

considered. The number of trials considered in the simulations 

are specified in brackets. 

Ankle side Ankle peak contact forces [%BW] 

 Month 0 Month 6 Month 12 

Right 
419±17 

(6 trials) 

517±18 

(7 trials) 

466±17 

(5 trials) 

Left 
450±17 

(5 trials) 

499±18 

(6 trials) 

481±17 

(6 trials) 

Involvement 
Both ankles 

(severe) 

None 

(Inactive disease) 

Both ankles 

(less severe than month-0) 

 

2.3.3. Validation of the experimental and modelling pipeline 

The described pipeline has been assessed through a repeatability extensively described in D10.4. The 

study was designed to investigate the repeatability of three critical steps of the modelling pipeline 
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used to generate patient specific models of the foot and ankle joint: virtual palpation of bony 

landmarks, manual adjustment of muscle paths and the definition of foot joint axes. 

The virtual palpation was found to be a repeatable operation, both intra- and inter-operator, and 

allowed for a refined subset of bony landmarks to be determined from the generic atlas initially 

developed. The manual adjustment of muscle attachments, even if performed by experienced 

operators using multiple MRI sequences, has been shown to be a highly operator-dependant step of 

the current pipeline. These results affect the biomarkers that will be extracted using the 

biomechanical model in the measure that the lack of repeatability affects ankle contact forces. 

Assessing the sensitivity of the articular loading at the tibio-talar joint to perturbation of the muscle 

attachments it was found that misplacement of the path of muscles with larger physiological cross 

sectional area and moment arm can affect contact forces. Still, even in the worst case scenarios, the 

sensitivity to overestimated uncertainty in the anatomical modelling was never much larger than 

10%. Most of the errors were related to the Achilles’ tendon, that from now on will be individualised 

with particular care. It is realistic to expect that in most cases sensitivity to anatomical uncertainty 

will never exceed 2-3%. Considering that subject-specific models of this complexity in any case 

produce predictions that are never more accurate than 90%, this level of sensitivity seems perfectly 

acceptable for the purpose. Finally, the identification of joint axes appeared to be less critical than 

the other two steps, although the introduction of semi-automatic tools in joint definition would 

represent a further improvement. 

2.3.4 Validation of the biomechanical models 

Validation of musculoskeletal models is a challenging task, because these models are used to estimate 

forces occurring within the human body, which cannot be directly measured. Traditionally, validation 

is undertaken as a qualitative comparison between predicted muscle activations and recorded 

electromyographic (EMG) signals (experimental muscle activations). The same validation procedure 

was applied for the developed model, comparing the calculated activations with the shape of EMG 

signals experimentally collected during the gait trials (Figure 25 and Figure ). The raw EMG signals 

were rectified and low-pass filtered. 

Another option for validating musculoskeletal models is comparing the values of contact forces 

predicted by the model against values measured by instrumented prostheses. However, these 

prostheses are implanted in adult patients undergoing total hip or knee joint replacement because 

they suffer of osteoarthritis, so the measured contact forces can hardly be used to validate a pediatric 

model and a fortiori a disease one. Although we did not perform a direct validation based on the 
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calculated joint contact forces, it was verified (Prinold et al., 2015) that our estimates were similar to 

the results available in the literature from previous simulations (Procter and Paul, 1982). 

 

2.4 Validation for NND models (WP6-WP11) 

Medical treatment to possibly regenerate or halt nerve and muscle degeneration in combination 

with rehabilitation and surgical procedures will hopefully revolutionise the way patients are treated 

and improve their quality of life. Accurate modeling of the legs and their function is an important 

step in this direction. 

 

In deliverables D11.1 and D11.2/D11.3, SAG presented a novel method to extract anatomical 

structures from MRI images of healthy and ill children’s legs. Complementarily, in deliverables D11.2 

and D11.3, USFD presented a method to estimate from the segmented geometries, the location of 

bony landmarks, ligaments and muscle/tendons insertion, attachments, and lines of action. In 

addition, USFD presented a method to compute bone and muscle volumes, and segment-specific 

reference frames, to be used for the personalization of OpenSim models. 

 

In this document the different technical steps are validate by each of the involved parners. In 

particular SAG validate the adaptation of the method to extract subject-specific muscles, bones and 

skin of the pelvis and legs, from MRI images of paediatric patients from 3 neuromuscular disease 

groups, namely CMT, DMD and CP. USFD validate the accuracy of the complete template anatomical 

model and of the mesh morphing method used to estimate the landmarks, attachements and lines 

of action. 

 

2.4.1 Validation of the MRI segmentation 

 

For each of the 3 disease groups, a set of 3-dimensional (3D) meshes for 54 individual muscles, 12 

bones, fore, middle and back feet as well as the whole skin of paediatric patients were manually 

annotated at SAG. For each of the 3 disease groups, 25 landmarks were annotated as well for 

qualitative assessment of the results.  

 

A qualitative validation between automatically defined muscles and bones and the geometry 

observed in the subject’s medical image data corroborate the quantitative validation.  
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We validate this approach quantitatively by measuring the distance between automatically and 

manually defined coordinates of landmark sites.  

 

This approach followed by visual inspection and, if needed, correction to the extracted structures, 

can dramatically reduce the time required for defining 73 lower limb muscles and bones.  Using the 

proposed method, defining MR-based musculoskeletal models can become a more time efficient 

and more accurate alternative to rescaling generic models. 

 

2.4.2 Basic Method 

 

The method developed at SAG and used on healthy children’s MRI images underwent special 

adaptations for each disease group. Figure 17 illustrates the basic pipeline, which consists of the 

following steps: 

1. First, one atlas is built for each disease group (CP, CMT, DMD) and individual meshes are 

manually annotated for every muscle, bone and skin of the lower limbs (label A in Figure 

17). 

2. Second, landmarks for the joints are detected in each target patient, and will be used to 

separate both legs into individual, non-articulated segments. 

3. For each leg segment, personalized affine transformations will be computed to map the 

specific disease atlas segment to the corresponding segment in the target image.  

4. All affine transformations are then combined in a multi-affine approach, whose result 

provides both plausible and quite reliable pose information about the target (label B in 

Figure 17).  

5. The result of the previous step is used to initialize non-rigid deformation, whose result 

will model more precisely the target individual’s musculoskeletal anatomy, body-fat 

compositon, etc. (labels C and D in Figure 17).  
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Figure 17: Overview of the bone, muscle and skin extraction method (SAG). 

 

2.4.3 Disease-specific adaptations of the method 

 

Extensive tests were performed to assess the viability of the original atlas used with healthy 

children’s images in pathological cases.  

The tests revealed that an atlas used for these purposes must be flexible enough to accommodate 

disease-specific deviations, such as femoral version. 

The method that we proposed in D11.1 was finely adapted to each of the 3 disease groups (DMD, 

CMT and CP), as described in D11.2 and D11.3. We created disease-specific atlas with detailed 

corresponding structures and adapted the structure extraction methods according to each disease 

group’s specificities.  
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The original method’s parameters were also extensively tuned for each group of patients. The 

evaluation results are shown in the Results section. 

 

2.4.4.  Application 

 

We manually annotated one reference patient image for each disease group, and applied our 

approach to a set of 3D MRI scans of paediatric patients in the ages of to 8 to 15 years old.  

 

For a quantitative measure of the results, a set of 25 landmarks has been annotated on all patients. 

The distance between these landmarks in the target image and those in the transformed reference is 

computed. 

 

The quality-test landmarks are listed in Table 1 below. 

 

l_FemurMiddle 

r_FemurMiddle 

l_FemurCaput 

r_SkinVentralPartCondylusOfFemur 

l_SartoriusVentralPartCaputOfFemur 

l_SkinVentralPartCondylusOfFemur 

l_QuadricepsVentralPartMiddleOfFemur 

l_TricepsDorsalPartCaputOfTibia 

l_FemurCondylusLateralis 

l_QuadricepsLateralPartMiddleOfFemur 

l_PatellaUpperPart 

l_GluteusMaximusUpperPart 

l_TricepsDorsalPartCondylusOfFemur 

r_FemurCondylusLateralis 

l_AchillesTendonBottomOfTibia 

r_GracilisMedialPartMiddleOfFemur 

l_TibiaCaput 

l_SkinDorsalPartMiddleOfFemur 
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r_SkinLateralPartCaputOfTibia 

l_FemurCondylusMedialis 

l_TibiaBottom 

r_FibulaMiddleOfTibia 

l_GluteusMaximusInOneLineWithCaputOfFemur 

r_PatellaUpperPart 

l_GracilisMedialPartMiddleOfFemur 

l_FemurMiddle 

r_FemurMiddle 

l_FemurCaput 

r_SkinVentralPartCondylusOfFemur 

l_SartoriusVentralPartCaputOfFemur 
 

Table 1: Landmarks used to measure registration quality at SAG. 

 

The distances between the landmarks have been measured and the overall results on these 

landmarks, as well as the results per disease group, are shown in Figure 2 

 

 

2.4.5 Results of validation 

 

The overall landmark distance was 8.298 mm. 

The average per disease group was 8.406 for CMT patients, 7.246 for CP patients and 9.118 for DMD 

patients. 

 

Overall, the method seems to perform quite well around the femora, as can be seen both 

quantitatively and qualitatively in Figures 5 and 6.  
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Figure 18: Landmark distance averages per disease group and overall. 

 

 

Figure 19 illustrates some qualitative resultson different patients. 

 

 

Figure 19: Qualitative results on children with CP, CMT and DMD. 

 

 

 

2.4.6 Validation of the complete anatomical model 

 

As presented in deliverable 11.2 and 11.3, from the segmented bone and muscle models, the 

geometric parameters required for personalizing the biomechanical model must be extracted. This 
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extraction requires some estimations based on features of the bones and muscles geometry. The 

most demanding parameters are the origins, insertions, and lines of action of the muscles and 

tendons. These attachment points are not directly visible in the MR image modality acquired for this 

project. Thus, USFD designed a strategy to extrapolate their location from the segmented 

geometries. First, a complete anatomical template model including bony landmarks, ligament and 

muscle-tendon attachements and lines of action, in addition to bones and mucles geometry, was 

built. Second a mesh morphing technic, developed by USFD for the STREP project MySpine 

(http://cordis.europa.eu/project/rcn/97394_en.html), was adapted to the deformation of the 

template to match the segmented geometries, generating the patient-specific complete anatomical 

model. The validations performed for the assessment of the accuracy of both elements are 

presented below. 

 

2.4.7 Complete anatomical template model 

 

The template model was generated by completing the MRI-extracted geometries of the healthy child 

used as atlas for the MRI segmentation. The bony landmarks, joint centres, ligament and muscle-

tendon attachments and lines of action were adapted from the TLEM2.0 model (Carbone et al., 

2015), which is publicly available for research from the TLEMsafe project webpage 

(http://www.utwente.nl/ctw/bw/research/projects/TLEMsafe).  

The TLEM2.0 data provided includes the bone geometries, landmarks, and lines of actions, but not 

the muscle geometries. Because of this, the morphing of the integrated TLEM2.0 model to the 

geometries of the MRI atlas child was expected to present some anatomical arrors in the resulting 

attachments and lines of action. 

The resulting model was revised for possible anatomical errors. The attachments and lines of action 

were visually inspected for each individual muscle. Following standard anatomical atlas and the 

clinical advice of VUMC, several anatomical errors were indentified. They were then manually 

corrected to follow the expected configuration with respect to the involved bone and muscle 

geometry. Figure 4 illustrates these manual corrections with three examples. Two iterations were 

performed for this correction and feedback process. After them, the final template was evaluated 

and accepted as anatomically correct by the clinical parterns in VUMC. 

http://cordis.europa.eu/project/rcn/97394_en.html
http://www.utwente.nl/ctw/bw/research/projects/TLEMsafe
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Figure 20: Three examples of the manual corrections of muscle-tendon lines of action performed 

during the evaluation of the anatomical accuracy of the complete MDPaedigree template for the 

lower limbs. 

 

2.4.8 Mesh morphing for patient-specific complete anatomical model 

 

The patient-specific complete anatomical model is obtained by mesh morphing of the complete 

template to the segmented geometries. The applied mesh-morphing algorithm has been adapted 
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from the algorithm developed for the European STREP project MySpine 

(http://cordis.europa.eu/project/rcn/97394_en.html). It allows the personalization of volumetric or 

surface model templates, including the extrapolation or interpolation of structures not directly 

extracted from the medical images, for biomechanical simulations (Malandrino et al., 2015, Castro-

Mateos et al., 2016). 

 

The developed morphing algorithm has been applied to the set of healthy and diseased children for 

which the MRI has been segmentated until today (Feb. 2016). This includes cases from the 3 

diseases considered: Cerebral Palsy (CP), Charcot-Marie Tooth (CMT), and Duchene Muscular 

Dystrophy (DMD). Figure 5 shows three examples of the resulting complete anatomical model, one 

for each disease group.  

 

 

Figure 21: Three examples of patient-specific complete anatomical model, one for each of the 

diseases (CP, DMD, and CMT). They have been obtained by the morphing of the template anatomical 

model to the geometries segmented from MRI. Detailed visual assessment was performed for all the 

cases. 

 

All the cases were visually assessed for its qualitative correctness. No problem was found in any of 

the cases in the final processing. Some problems detected for a pair of cases, actually revealed that 

the transferred data from SAG to USFD had some format corruption, involving missing shapes or 

http://cordis.europa.eu/project/rcn/97394_en.html
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misspelings. This helped to refine the transference protocol to be more robust. Once the input 

segmentated model was corrected, the morphed complete anatomical model presented no 

qualitative error. 

 

Surface-to-surface distance is a standard measure of the similarity between two surface models. In 

order to quantitatively measure the fiting accuracy of the patient-specific morphed template to the 

originally segmented geometries, the surface-to-surface distance between both shapes has been 

computed for all the cases. Figure 6, displays the distribution of the surface-to-surface distance 

across the complete model stratified by disease group. No important differences are observed. The 

morphing seems to give slightly larger error for CP and CMT children than for DMD children, which 

have a similar behaviour than the healthy volunteer. In any case the errors are of the order of 1mm, 

which are negligible in comparison with the segmentation errors. 

 

Even if the global errors are small, it could be still possible that some individual bone or muscle had a 

larger error. For this reason, the mean surface-to-surface distance has been computed per 

anatomical element. Figure 7 shows these errors per anatomical element, also stratified by disease 

group. No important difference is observed for any disease or anatomical error. The only point to 

remark is the relatively larger error for the gracilis muscle in the volunteer child. However, even for 

this case, the mean error is around 1mm. 

 

Figure 23: Distribution of the surface-to-surface distance error between the morphed model and the 

segmented geometries, across the complete model. The error has been stratified by disease group.. 
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Figure 24: Mean surface-to-surface distance error for each individual bone and muscle, between the 

morphed model and the segmented geometries. The error has been stratified by disease group. 

  

From these results we can conclude that the morphing algorithm is able to accurately personalize 

the template complete anatomical model to the patient-specific bone and muscle geometries 

segmented from MRI.  
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Figure 25: Comparison of EMG signals and computed muscle activation for one walking trial at month-6 

(left side). 

 

 

Figure 26: Comparison of EMG signals and computed muscle activation for one walking trial at month-6 

(right side). 
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3. Future work 

At current status, retrospective prediction in all four disease areas is close to completion. Delivered 

models in the four disease areas have been derived and tested in a substantial number of patients included 

in the study sample, and as detailed in the present document the validation process has so far 

demonstrated that the current model provide significant accuracy and robustness in the definition of the 

different diease. The models are now ready to be tested in the whole study population to provide both 

patient specific models (gained in almonst all disease areas) and to expand its ability on the patinet specific 

prediction, mainly thanks to the nearly completed data acquisition process and also to the increasing 

number of patients uploaded into the digital repository.  

As detailed in the WP12, the steps of the validation have been defined in order to guarantee a 

uniform validation approach. The single validation steps for each disease area include a number of 

processes and analysis which include: 

1) Initial testing and debugging of the mechanistic model to assure that the models comply with 

the clinical user requirements and that the information obtained from the models provide 

clinically useful information and predictions. 

2) Internal validation including: 

a. Data selectivity and specificity, to define to the extent to which it can determine key 

factors in a complex mixture of data without interference from other components. 

b. Accuracy of detection, related to the reproducibility and repeatability of the models, in 

order to verify that repeated measurements under unchanged conditions provide the 

same results 

c. Limits of detection and quantification, in order to establish the lowest amount of useful 

data that can be used by the models to provide an accurate and precise prediction of 

single disease definition and progression. 

3) External validation 
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A schematic representation of the status of validation can be seen below: 

 Initial 

debugging 

Data 

specificity 

Internal 

validation 

Accuracy Limits of 

detection 

External 

validation 

CMP-PS       

CMP-PM       

CVD-PS       

CVD-SM       

JIA-PS       

JIA-PM       

NM-PS       

NM-PM       

 

CMP=cardiomyopathies; CVD=cardiovascular disease; JIA: juvenile idiopathic arthritis; NMD=neuromuscular diseae; PS= patient 

specific model; PM= predictive model; SM=statistica model. Green square= achieved, Orange square= achievement in progress, Blu 

square= to be completed during the last year of the study. 

 

Accordingly the validation process in the fourth and last year of the project will focus on patients 

prediction validation and to the external validation process, as it is well known that the prognostic 

prediction is almost always better on the data set on which the model has been constructed (learning 

series) compared to the performance of the same model on new data (testing series). 

 

During the fourth year of the study the WP12 will also focus on the definition of revised clinical 

workflows for the four disease area. Following the work provided by the WP2 in the deliverables D2.2 and 

D2.3, clinical pathways will be modified and revised accordingl to the validated impact of models in patient 

specific disease definition and patient specific disease prediction. Clinical workflow will integrate changes in 

current workflows derived from the validated potential impact of therapeutic intervention effect. 
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