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1 Project summary 
MD-Paedigree is a clinically-led VPH project that addresses both the first and the second actions of part B of Objective ICT-
2011.5.2: 
1. it enhances existing disease models stemming from former EC-funded research (Health-e-Child and Sim-e-Child) and from 
industry and academia, by developing robust and reusable multi-scale models for more predictive, individualised, effective and 
safer healthcare in several disease areas; 
2. it builds on the eHealth platform already developed for Health-e-Child and Sim-e-Child to establish a worldwide advanced 
paediatric digital repository. 
Integrating the point of care through state-of-the-art and fast response interfaces, MD-Paedigree services a broad range of off-
the-shelf models and simulations to support physicians and clinical researchers in their daily work. MD-Paedigree vertically 
integrates data, information and knowledge of incoming patients, in participating hospitals from across Europe and the USA, 
and provides innovative tools to define new workflows of models towards personalised predictive medicine. Conceived of as a 
part of the “VPH Infostructure” described in the ARGOS, MD-Paedigree encompasses a set of services for storage, sharing, 
similarity search, outcome analysis, risk stratification, and personalised decision support in paediatrics within its innovative 
model-driven data and workflow-based digital repository. As a specific implementation of the VPH-Share project, MD-
Paedigree fully interoperates with it. It has the ambition to be the dominant tool within its purview. MD-Paedigree integrates 
methodological approaches from the targeted specialties and consequently analyses biomedical data derived from a 
multiplicity of heterogeneous sources (from clinical, genetic and metagenomic analysis, to MRI and US image analytics, to 
haemodynamic, to real-time processing of musculoskeletal parameters and fibres biomechanical data, and others), as well as 
specialised biomechanical and imaging VPH simulation models. 

2 Executive summary 
As an update of D14.2, this document will just present the novelties of the infostructure. To have an exhaustive view of the 
platform, please refer to D14.2. 
This document will first present the new dimension of the repository which is managing access rights, defining conceptually 
and technically the new abilities of the system. Then, the GUIs offering new functionalities and the integration of HES-SO CBR 
will be described, followed by the web version of Athena DCV and AITON, respectively managing curation and validation and 
statistical models. 
Following the usual order since D14.1, work on GPUs will end this presentation just after a presentation of the anonymiser 
tools that gnúbila has provided to the project. 
We remind the reader that all these components are coming in addition to the tools presented in deliverables D14.1 and D14.2 
(we chose not to present them a third time in this document) and that this document does not by itself transcribe the entirety 
of the amount of work provided during the project’s first three years. 
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3 FedEHR a Clinical Data Repository (CDR) 
3.1 Hardware Architecture 
3.1.1 Current installed node  
Current architecture is composed of: 

- 1 Node at OPBG Rome 
- 1 Node at CCPM Taormina 
- 1 Node at DHZB 
- 1 Portal 
- 1 Central Server 

The existing installation provides one additional node at DHZB gained from Cardioproof collaboration.  
The nodes are currently installed and connected together through a FastWeb secured connection. This allows all sites to share 
information with ease. 

3.1.2 Planned node  
Added to the current installation, and despite the unavailibity of funds to cover the cost, KUL has provided a hardware that is 
currently under installation to add a new node. 
At the time beeing, GOSH is also planning to acquire hardware to provide an access point. 

3.2 Patient Centric model 
As described in the deliverable D14.2, the current description of FedEHR architecture provides an evolutionary structure of 
data starting from the patient.  
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Figure 1: Patient-Centric Model 

The FedEHR metamodel is by design easily evolvable and conceptually fully compatible with health modelling tools. Designed 
to be simple and understandable by physicians and non-IT experts, FedEHR thus offers a simple, powerful and harmonized 
patient-centric representation of EHR data.  
The core system model can be synthetized as follows (for the sake of clarity, only the main objects are represented here).  
The model revolves around the Patient concept. It is a global pattern for all medical information types. A Medical Event can 
relate to one or several Patient(s) and Medical Staff. A Medical event is composed of a set of Clinical Variables, each of which 
can be a simple value (i.e., blob, coded value, integer, float, measurement, etc.) or a more complex data (i.e., tree of values, 
reference to a complex document stored in an external document or image repository, etc.).  
A main concept called Clinical Variable Type is attached to Clinical Variable, which ensures semantic consistency, and thus 
allows concepts from external terminologies such as HL7, SNOMED, ICD-10 (or any other) to be linked in to any clinical variable 
or clinical variable type. This way, data can be turned meaningful while the original patient-centric model remains simple 
enough to tackle any possible types of data faced in targeted health information systems. 

3.3 FedEHR Data Distribution & Access Strategies 
FedEHR allows for various data distribution strategies, useful to best-fit geographically dispersed and heterogeneous 
data ecosystems. In FedEHR, data schemata are represented as trees, which can be physically partially or fully stored in 
different backend instances. The following figure depicts the four possible distribution strategies. 
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Figure 2: Data Distribution 

With full replication, top-left of the figure above, a complete database can be replicated between several sites, thus 
avoiding single point of failure. This can be useful to RIS systems (Radiology Information Systems) where a high quality 
of service is needed, in terms of access performance and load-balancing. Partial replication, top-right of the figure, has the 
advantage of providing good scalability as data can be organized in sub-trees, each of which is managed independently, in 
and by concerned sites. A federation of individual schemata, bottom-left of the figure, is the most interesting solution in 
the present case, where manipulated data can potentially be highly sensitive. The latter ensures data collection, 
ownership and control remain local, while providing harmonized access to authorized users. In this particular scheme, 
users navigate a global data catalogue, whereas access to the data stored in individual sites is strictly regulated by the site 
itself and according to local data protection rules. Finally, also worth noticing, a variant of FedEHR's federation strategy is 
the federation with proxy redirection, bottom-right of the figure. Federation with proxy redirection allows sites not 
equipped with IT to contribute data to an existing database. This can be of interest in the case of isolated medical offices, 
for instance. 
Syntactically speaking, FedEHR also provides connectors to mostly utilized database backend (from MySQL,1 to 
PostgreSQL,2 to Oracle,3 SQLite,4 and Berkeley DB XML5) and offers a SQL (Structured Query Language)-like query 
interface and transactional engine, thus harmonizing and strengthening querying over heterogeneous data sources, 
irrespective of their locations and conforming to data confidentiality requirements. 
 

                                                                 
1 MySQL is the world's second most widely used open-source relational database management system. It is named after co-
founder Michael Widenius's daughter, My.  
2 PostgreSQL, often simply Postgres, is an open source object-relational database management system with an emphasis on 
extensibility and standards compliance. 
3 The Oracle Database (commonly referred simply as Oracle) is an object-relational database management system produced and 
marketed by Oracle Corporation: www.oracle.com. 
4 SQLite is a relational database management system contained in a small C programming library. In contrast to other database 
management systems, it is not a separate process that is accessed from the client application. 
5 Berkley Database engine EXtensible Markup Language 

http://www.oracle.com/
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3.4 FedEHR Data access rights management 
3.4.1 Model 
Taking advantages from the simple data model and distribution abilities, FedEHR implements a simple but powerful Role Based 
Access Control (RBAC). Inspired from the literature and designed to respond to GDPR6 specifications, the model has been 
enriched by a fine tuned access controlled piloted by the Data Protection Officer (DPO) of each centre. 

 
Figure 3: Access Rights Management 

 
Users are registered in a replicated table managed by the central node manging synchronisation between the different centres 
of the shared system. This allows a shared view of users. For each centre DPOs can create groups referencing both user from 
their local centre and external users. 

                                                                 
6 GDPR : General Data Protection Regulation 
http://www.europarl.europa.eu/meetdocs/2014_2019/plmrep/AUTRES_INSTITUTIONS/COMM/COM/2015/12-
17/COM_COM%282012%290011_EN.pdf 
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Groups represent the concept of “group of users”. Each group can be composed of a subset of users and reference a set of 
Access Rights. 
Access Rights defines the ability of groups on restricted objects. They are incremental and are giving rights as following: 

• No Right: the concerned object cannot be viewed by the user; it cannot even be listed. 
• Read: The user can see the restricted object. 

o In the case of a patient, the user can see the patient available identity information, address, hospital and the 
mist of Medical Event IDs attached 

o In the case of a Medical Event, the user has access to the whole information of the event but not of the 
patient 

• Write: The user has the right to add and modify (when relevant) information he can see. 
• Manage: This access allows user to give access rights to groups 

3.4.2 Behaviour 
Users register themselves at central node (on the shared portal) using a simple easy to understand wizard and get an account. 
The registration can be directly onto the central node or delegated to a specific authentication authority (like EDUGAIN, 
Facebook or LinkedIn) depending on the degree of security and project policies. 
 
The connection does not give any access to the data. The registration makes identities available to the different DPOs to be 
added to groups. 
 
DPOs manage groups at the centre level, despite being centralised, users are assigned to local groups. 
DPOs can define as many group as they want to create. 
DPOs can manage all patients and medical events access rights. 
 

3.4.3 Java/WebService API 
3.4.3.1 Objects 
 

 
Figure 4: Access rights Objects 

 
Acl is composed of a grpAccessRight and a AclManagedObject. This object is used to get/set information about access rights. 
 
GrpAccessRights is composed of a reference to a Group and a Sharing Type 
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Group represents the logical concept of groups, groups are managed by the DPO, have a name and references a list of users 
acquiring all the GrpAccessRights the group have. 
 
SharingType is the object that represents the ability of the group for one AclManagedObject. Read/Write and Manage are 
stored in the DB, None is the default value and is only used to unset rights. 
 
AclManagedObject is an abstract concept, it represents the own-ability of a object. Each AclManagedObject is created 
associated to an owner who is a physician that is responsible of the attached data. 
 
MedicalEvent and Patient are AclManagedObjects, they encapsulate the patient data. 
 

3.4.3.2 Implemented API 
A java/WebbService API is available to use the access right management. This API exposes all the secured functions that are 
needed but one (DPO assignation). The functions are: 
 
addGroup(Group )  
what: add a group to the system 
who: DPO 
 
addGroups(Groups ) 
what: add a list of groups to the system 
who: DPO 
 
addUsers(Users ) 
what: add a group to the system 
who: Imported from central Node 
 
addUsersToGroup(GroupUsers )  
what: assign Users to group 
who: DPO 
 
deleteGroup(Group )  
what: remove a group from the system 
who: DPO 
 
deleteGroups(Groups )  
what: remove a list of groups from the system 
who: DPO 
 
getSharing(AclManagedObjects ) 
what: give the list of access each object of the list have 
who: Anybody with Read access to the objects 
 
listACLs(QGroup ) 
what: give the list of objects the group have 
who: Anybody with Read access to the objects 
 
listGroups(QGroup )  
what: lists groups matching the query 
who: anyone 
 
listGroupUsers(QGroup ) 
what: lists the users of a group 
who: anyone 
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listUserGroups(QUser )  
what: lists the groups of a user 
who: anyone 
 
listUsers(QUser )  
what: lists matching the query 
who: DPO 
 
setSharing(Acls )  
what: adds access rights to objects 
who: DPO, owner of concerned objects or user in group with Manage right. 
 
updatePatientsOwner(OwnerAndPatients )  
what: assign a new owner 
who: Owner 
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4 Case-based retrieval service 
4.1 Text based 
The Case-Based Retrieval (CBR) service aims to help physicians to find similar patients based on the clinical reports of a given 
patient. In addition, the service proposes a summary of the returned cases of similar patients at different points in time. In the 
system, the basic search item is the episode of care. 
 
The CBR is developed by HES-SO. Figure 5 illustrates the global workflow of the CBR. On the HES-SO server, an index is created: 
data are extracted from the PCDR and indexed using a local instance of Apache Solr. A MeSH normalization of the clinical 
syntheses is locally performed and stored in the indexes. The graphical user interface, together with all dependent services, are 
located on the MD-Paedigree Portal. The services communicate with the index to obtain the similar cases list using Json 
exchange messages.   
 

 
Figure 5: Overall workflow of the CBR engine. 

 
Clinical data from the MD-Paedigree project are obtained through the secured PCDR API developed by gnúbila. HES-SO 
obtained a GRID certificate delivered by SwiNG (i.e. one of the certificate authorities delivering GRID certificates in Switzerland) 
in order to be trusted by the PCDR server. Thus, the global workflow includes a secured synchronization between HES-SO and 
the MD-Paedigree portal.  
 
A set of 47,433 episodes of care was extracted, corresponding to 33,674 distinct patients. The following demographic 
information is extracted: gender, birth date, date of the episode of care, conclusion content (i.e. clinical synthesis). The data is 
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then directly indexed. In addition, a set of MeSH descriptors is automatically assigned to the clinical syntheses. These 
descriptors are also indexed.  
 
In the current version of the CBR, and in order to facilitate the display in the CBR graphical user interface, the following 
information is stored in the Solr Index: age of the patient when the episode of care occurred, gender, clinical synthesis and 
MeSH descriptors. However, in the final version of the CBR, it is planned that the information will not be stored anymore in the 
index but directly fetched from the PCDR at query time.  
 
Regarding the graphical user interface, a full integration of the CBR has been performed (Figure 6). The HES-SO team has been 
trained by the Gnùbila team, in order to be able to integrate the current version of the CBR and its future updates. An instance 
of the Liferay Portal has been locally installed (version 6.1.2) at HES-SO for sake of development. The current CBR servlet has 
been transformed to a portlet. Once ready, the HES-SO team pushed the final version on a web-based Git repository manager 
and the Gnùbila team deployed it on the MD-Paedigree portal. 
 

 
Figure 6: Fully-integrated GUI of the CBR 

 

4.2 Image based 
As part of the similar case retrieval it is planned to include also visual retrieval, so visual characteristics that are extracted 
directly from the image pixel information. Such content-based image retrieval has shown in the past to well complement the 
text-based or structured querying. In year 3 checks were done with the disease areas to select the best possible scenario and 
gather sufficient image data for training in at least one of the disease areas. Prototypes were developed on retrieval of images 
from the literature by visual means in year 3. In year 4 this will be extended to at least one of the disease areas and evaluation 
in combination with the semantic retrieval for a mutlimodal retrieval approach. 
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5 DCV : Data Curation and Validation 
An updated version of the web-based Data Curation and Validation (DCV) tool has been released as part of the beta prototype 
of the infostructure. The DCV tool, developed by ATHENA, is a web application offering an advanced (semi)-automatic data 
cleaning process for MD-Paedigree data. The tool uses a client-server architecture, illustrated by the following figure. 

 
Figure 7: Architecture of the new and updated DCV tool. It is connected with the MD-Paedigree infrostruction via Gnubila’s API 

 
For more information about DCV’s alpha implementation please consult deliverable “D15.2 - DCV curation tools and services to 
automatically and manually acquire high-quality curated data”. For the beta release implementation and details on what has 
been improved and updated since the previous version, please also consult “D16.2 - Beta Prototype of KDD & Simulation 
platform”. 
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6 AITON: Knowledge Discovery (KDD) and Simulation Platform 
AITION is the information processing, knowledge discovery (KDD) and simulation platform for Big Data Healthcare, as well as, 
the related, well-defined KDD workflow that promotes model-guided personalized medicine. AITION is developed under WP16 
and is made up of a number of different modules, as described in detail in deliverable “D16.1 - First report on biomedical 
knowledge discovery and simulation for model-guided personalized medicine”. The beta release of the infostructure 
incorporates the components described below. 
 
Under task “T16.1 - General data analysis and knowledge discovery tools”, some well-established Machine Learning (ML) 
techniques and algorithms have been implemented on top of ATHENA’s EXAREME (ex ADP/madIS) data flow processing 
system, following the same architecture used by the DCV tool (T15.1). This way, all platforms and tools developed by ATHENA 
will be integrated providing an end-to-end data pre-processing, data analysis and data mining platform with only one point of 
integration with the MDP platform. 
 
More specifically, the current version of DCV mainly consists of data preprocessing and cleaning methods. In order to further 
extend its functionality and provide a more complete user experience, we have decided to incorporate several well-established 
ML algorithms within the same WEB-based data analysis platform, following the same architecture. This way, we are 
integrating together in a streamlined fashion all platforms and tools produced by ATHENA RC, providing an end-to-end online, 
data cleaning, pre-processing, data analysis and data mining platform, with only one point of integration with the MDP 
platform.  
 
Thus, the end-user besides being able to pre-process data (e.g. detecting errors or outliers), will also have the opportunity to 
identify groups and similar cases or create models that predict the value of one or more target variables using the same 
platform. For this purpose, we have incorporated an open source Python library, scikits.learn (http://scikit-learn.org/stable/) 
which contains a number of well-established machine learning algorithms and techniques implemented in Python libraries. 
These libraries can be easily imported on top of EXAREME as specific User-Defined Funtions (UDFs) of the madIS system 
(EXAREME’s worker). Such UDFs, construct predictive or clustering models, estimate new values for unlabeled data, and 
categorize new data samples. 
 
At this point, three general UDFs (operators) have been developed: 

● one for creating clustering (unsupervised) models, 

● one for training the classification / regression (supervised) models, and 

● one for predicting new values for unlabeled data samples. 
 
Furthermore, as will also be described in detail in the forthcoming deliverable “D16.2 – First report on biomedical knowledge 
discovery and simulation for model-guided personalized medicine”, we have already incorporated within DCV ten (10) new 
algorithms: 4 clustering, 3 supervised, and 3 methods for dimensionality reduction.  
 
A screenshot of the new “KDD section” extending the capabilities of the DCV tool is shown in the following figure. In particular, 
the user can now choose among several extra preprocessing techniques like dimensionality reduction for visualization or 
feature extraction. The user can also identify similarities among the samples, or construct classification or regression models 
via the clustering & supervised sections respectively. All models are serialized and stored in a compressed file. We are also 
working to store the model in user's database but most of the time what is better in terms of memory allocation depends on 
the model's size. Therefore, each user will have the ability to choose a trained model in order to cluster or classify new 
incoming samples. 
 

http://scikit-learn.org/stable/
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Figure 8: DCV - KDD integration: An extra flow-step (“Knowledge Discovery”) has been added within the DCV tool giving the user the 

opportunity to explore new knowledge discovery techniques. 
      
Under task T16.3, the AITION Desk tool (rich GUI application) has been adapted to MD-Paedigree related requirements and a 
first level integration (for data retrieval) with the platform has been achieved. In addition, we have re-implemented specific 
algorithms for Bayesian Network structure learning initially written in Matlab, following a Service Oriented Architecture that 
will give as the opportunity to provide such functionality on top of the MD-Paedigree platform. 
 
Integration of the AITION/DCV tools with the platform: A first level integration (for data retrieval) with the platform has been 
achieved. More specifically, at this point we are able to first explore the underlying domain model (data types, model’s 
hierarchy) and select specific variables. Then, based on these variables, the related SQL is generated to parse data through the 
MD-Paedigree platform API. 
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7 Gnubila Anonymiser 
As a consequence of the amount of data that was not following the MD-Paedigree guidelines in term of anonymization and the 
lack of such a tool in different centres, gnúbila has decided to provide for free its anonymisation solution. 
This anonymization tools is both installed as a standalone at some partners sites and also embedded inside all importers 
provided by gnúbila. 

7.1 Architecture 
The architecture of the Anonymizer is based on the Application Server Tomcat 77 and contains an ETL (Extract Transform Load) 
engine provided by Apache Camel8. Apache Camel is an open source Java framework that focuses on making integration easier 
and more accessible to developers. It does this by providing: 

• concrete implementations of all the widely used Enterprise Integration Patterns (EIPs), 
• connectivity to a great variety of transports and APIs, 
• easy to use Domain Specific Languages (DSLs) to wire EIPs and transports together. 

The FedEHR Anonymizer is generic by design and therefore configurable to respond to the latest and evolving data privacy 
regulations. The proposed version of the solution will be widely customizable through the privacy profiles, which data curators 
can define based on ethical concerns and applicable regulations. 
The FedEHR Anonymizer is able to process different file types like Digital imaging and communications in medicine files (or 
DICOM), CSV files (Comma-Separated Values). 
The architecture allows the Anonymizer to provide a wide flexibility regarding the protocols for the input/output/quarantine 
management (local file, FTP/SFTP, PACS, etc.). 
The Anonymizer provides a Web Console, based on Hawtio9, to facilitate the administration of the Camel routes. The Camel 
plugin of the FedEHR Anonymizer Web Console allows getting statistics and graphical charts about the anonymization process, 
but also more importantly a graphical visualization of your Camel Routes that will help you to customize your routes.  

7.2 FedEHR Anonymizer Index Database 
The FedEHR Anonymizer Index Database is based on the concept of Master Patient Index (MPI). A Master Patient Index (MPI) is 
an electronic medical database. The MPI stores and maintains a unique index (or identifier) with different information about 
the patient (patient name, gender, date of birth, etc.), and it can also include data on physicians or other medical staff.  
The Master Patient Index ensures that each patient is stored only once within all the system and maintains all the data 
consistent. 
The FedEHR Anonymizer is able to dump any identifying data extracted during the anonymization process into a Master Patient 
Index, called FedEHR Anonymizer Index Database, or Index Database. This MPI, based on MapDB10, is an embedded database 
engine. 

7.3 Anonymize files 
Once started, to invoke the Anonymizer with the local route, you have to paste your original file into the Input directory 
(specified during the installation step, see above). 
The .camelLock file indicates that your file (Dicom/CSV/...) is being processed by the Anonymizer: 

 
Figure 9: Processing a DICOM 

 

                                                                 
7 Apache Tomcat: https://tomcat.apache.org/index.html 
8 Apache Camel: http://camel.apache.org/ 
9 Hawtio: http://hawt.io/ 
10 MapDB: http://www.mapdb.org/ 
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Once your file is successfully processed, your file is moved into the output directory. 
If an error occurred during the anonymization process, the original file is moved into the quarantine folder (configured above). 
A report containing the error message and the stacktrace is also created: 

 
Figure 10: Quarantine folder 

 

 
Figure 11: Quarantine report 

 

7.4 Manage the Camel routes 
The FedEHR Anonymizer provides a graphical tool, the FedEHR Anonymizer Web Console to easily manage and customize the 
Camel routes. 

7.4.1 Access to the graphical Camel environment 

• To access the graphical Camel environment, the User must be uncommented and the Administrator Password must 
be changed in the TOMCAT_HOME/conf/tomcat-users.xml configuration file.  

• Open your favourite Web Browser to the following TOMCAT_ADDRESS/hawtio. 
1. Use the login and password that you customized above to log in to the FedEHR Anonymizer Web Console. 

 
Figure 12: FedEHR Web Console: Login page 

2. Go to the Camel tab. 
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7.4.2 Visualize and Monitor your routes 
The FedEHR Anonymizer Web Console allows you to visualize and monitor your Camel routes. It’s a useful feature to deal with 
complex Camel routes. 

1. The different routes registered in the Camel Context are listed in the left part of the page (Figure 13). 

 
Figure 13: Registered Routes in the Camel context 

 
2. You can get real time information (Figure 14) about the status of your routes. 

 
Figure 14: Real time information about the Camel routes 

 
3. To graphically visualize your routes (Figure 15), select a route and choose “Route Diagram” 
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Figure 15: Graphical representation of a Camel route 

 

7.4.3 Graphically customize Camel routes 
The FedEHR Anonymizer Web Console allows the administrator to modify on the fly the Camel routes (Figure 16). In order to 
do this: 

1. Select a route on the left side of the interface. 
2. Click on Source tab. 
3. Process your modification and validate the modification by clicking on Update. 
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Figure 16: Graphical customization of a Camel route 
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8 GPU based processing and computation 
8.1 GPU accelerated geometric multigrid method 
8.1.1 Introduction 
The two most popular algorithms for the solution of the sparse linear systems of equations resulting from the discretization of 
partial differential equations are the preconditioned conjugate gradient method (PCG) [Gui et al., 2012] and the multigrid 
method (MG) [Briggs et al., 2000], [Trottenberg et al., 2000], in its two variants geometric MG (GMG) and algebraic MG (AMG). 
The PCG method is regularly used for solving sparse symmetric positive definite linear systems, it is easy to implement, and 
converges in at most n steps to the solution (n is the size of the system) [Ament et al., 2010]. 
Originally, multigrid methods were developed to solve boundary value problems posed on spatial domains. More recently, the 
original multigrid approach has been abstracted to problems in which the grids have been replaced by more general levels of 
organization [Briggs et al., 2000]. The multigrid method is based on a hierarchy of discretization levels, whereas the corrections 
performed at the coarser discretization levels improve the convergence rate of the solution on the finest discretization level. 
The GMG method requires specific information on the hierarchy of discretizations, but, if this information is available, it is 
considerably more efficient than the AMG method [Ruge et al., 1987]. 
Previous researches have demonstrated that the GPU-based implementation of the GMG outperforms its CPU-based 
counterpart. Hence, in the current activity we have focused on a more in-depth analysis of the GPU-based GMG algorithm. 
Specifically we employed different GMG variants, different discretization schemes for the Poisson equation, varying number of 
smoothing steps during restriction and prolongation, we used single and double precision computations, and different 
discretization resolutions. Finally, we determined the performance gap between the GMG method and the PCG method on a 
state-of-the-art GPU. 
 

8.1.2 Methods and implementation 
To study the performance of the GMG method we consider the Poisson equation. To address the aspects mentioned in the 
introduction, in the following we specifically refer to the steady-state heat conduction problem and apply a finite difference 
method for its discretization in a three-dimensional domain. A uniform mesh of points is used, and, by applying central 
differencing, three different discretization schemes are considered, leading to:  
a 7-point stencil, 
 Ti,j,kn + Ti+1,j,k

n + Ti-1,j,k
n + Ti,j+1,k

n + Ti,j-1,k
n + Ti,j,k+1n + Ti,j,k-1

n -7Ti,j,kn = 0 
a 19-point stencil,  
Ti,j,k-1
n + Ti-1,j,k-1

n + Ti+1,j,k-1
n + Ti,j-1,k-1

n + Ti,j+1,k-1
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n + Ti+1,j,k
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n + Ti,j+1,k
n + Ti-1,j-1,k

n +
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and a  27-point stencil, 
Ti,j,k-1
n + Ti-1,j,k-1
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n -27Ti,j,kn = 0. 

 
As described in section 8.1.1, geometric multigrid methods (GMG) refer to a group of algorithms for solving differential 
equations using a hierarchy of discretizations (Figure 17). The discretization is applied for different grids, whereas the grids 
have successively larger spacing between the nodes. All GMG variants are based on successive transitions from fine to coarse 
grids and back. Hence, the basic steps of the GMG method are: 
- relaxation (smoothing): a simple iterative method like Jacobi or Gauss-Seidel is used to reduce the high frequency errors 

in the solution; 
- restriction: the residual determined on a finer grid is downsampled to a coarser grid; 
- prolongation: the residual on a finer grid is determined by interpolating the values from the coarser grid. 
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Figure 17: Basic concept of the geometric multigrid method: the solution is iterated through different discretization levels 

 
The relaxation methods employed herein are red-black Gauss-Seidel (RBGS) for the 7-point stencil [Vizitiu et al., 2014], and 
Jacobi for the 19-point and 27-point stencils [Chung, 2010]. The red-black Gauss-Seidel method requires one array for storing 
the values, but the computations are divided into two sequential steps: grid nodes are marked as being red or black, whereas 
all neighbors of a node have the opposite color of the current node. Hence, when updating the values of the red nodes only 
values at black nodes are used, and vice-versa. The Jacobi method uses only values from the previous iteration and hence only 
one computation step is required at each iteration, but two different arrays are allocated for storing the previous and the 
current values at the grid nodes. 
The GMG variants considered herein are displayed in Figure 18: V-cycle, W-cycle and full MG (FMG) scheme. Each figure 
depicts the strategy for a single iteration (multiple iterations are required to converge to the final solution). 
Whereas GMG is based on an explicit solution scheme, the PCG method employs an implicit solution scheme for solving sparse 
linear systems of the form. 
 

 
Figure 18: Geometric Multigrid variants: (a) V-cycle, (b) W-cycle, (c) Full MG (FMG). 

  
 
The implementation of the V-cycle and W-cycle GMG variants are based on the µ-Cycle algorithm (Algorithm 1), which is a 
recursive scheme. The only difference is given by the parameter µ, which dictates how many times a new function will be 
launched: for the V-cycle µ = 1, whereas for the W-cycle µ = 2. When it is first launched, the algorithm starts at level 0, and, 
every time a new function is launched, a coarser grid is used [Briggs et al., 2000]. The values n1, n2, n3 determine the number 
of smoothing steps on the descending branch, at the coarsest level, and respectively on the ascending branch. Additionally to 
the prolongation step, on the ascending branch, a correction is employed: the values on the destination level are corrected 
based on the interpolated values computed from the source level (a matrix-sum operation is performed). 
 
Algorithm 1  µ-Cycle  

µ-Cycle(level) 
 if( level is coarsestLevel ) 
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  apply n2 smoothing steps  
 else 
  apply n1 smoothing steps 
  compute residual 
  restrict to a coarser grid 
  µ-Cycle(level+1) µ times  
  prolongate 
  correct 
  apply n3 smoothing steps 
 end 

   
The multigrid method requires one storage array for each level (level 0 uses the largest array and occupies most of the 
execution time). At the coarsest level (level L) a 3D grid with 3x3x3 nodes is used. We consider Dirichlet boundary conditions, 
and, hence, the values on all faces of the domain are known (we set the values on five faces to 0, and one face to a non-zero 
value). 
 

8.1.3 Results 
To evaluate the performance of the GPU based GMG implementation we used a NVIDIA GeForce GTX Titan Black graphics card, 
and the CUDA toolkit version 6.0. The steady-state heat conduction problem was solved on a rectangular domain, and the 
Dirichlet boundary conditions, were set to 0⁰C for five facets and to 100⁰C for the remaining facet. The numerical solution was 
obtained on a grid of 129x129x129 nodes. Different numbers of smoothing steps were considered at different levels of the 
GMG method. Each configuration is described by a three-figure number: the first value determines the smoothing steps while 
restricting the grid, the second value determines the smoothing steps at the coarsest level, while the third number determines 
the smoothing steps while prolongating. All computations are performed in double precision and use the 7-point stencil when 
not otherwise stated, and iterations are performed until the average residual value no longer decreases from one iteration to 
the next (a value close to the limit of the corresponding floating point representation limit is reached). 
First, we compare the different GMG schemes (V-cycle, W-cycle and FMG) in a 313 configuration with red-black Gauss-Seidel 
smoother. Figure 19 displays the dependence between the execution time and the average residual. The V-cycle scheme 
performs best: although it requires more iterations than the W and FMG schemes (13 iterations for V, 8 iterations for W, 11 
iterations for FMG), the average residual decreases to 1e-14 in the shortest amount of time. Hence, for the following steps we 
present results for the V-cycle scheme. 
 

 
Figure 19: Comparison of different GMG schemes (V, W, FMG) when the RBGS smoother is used 

 
 
Next, we analyze the effect of the smoothing configuration (for a RBGS smoother). Figure 19 displays the four best performing 
configurations: two or three smoothing steps are required during restriction and prolongation, while only one smoothing step 
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is required at the coarsest level. From the four depicted strategies, 212 and 312 perform best: 212 is slightly faster but requires 
one more iteration to reach an average residual of 1e-14 (11 vs 10 iterations), leading to approximately the same execution 
time.  
 

 
Figure 20: Effect of smoothing steps on the performance of the GMG method 

 
In the following we analyze the effect of the floating precision on the performance of the GMG method (Figure 21). We 
considered single and double precision, in combination with the best performing smoothing configurations (212 and 312). The 
average residual in single precision is limited to approx. 1e-5, whereas in double precision it decreases to 1e-14. The residual of 
1e-5 is reached slightly faster in single precision since the GTX Titan Black card has a higher GFLOP processing power in single 
precision than in double precision.  
 

 
Figure 21: Effect of floating point precision on the performance of the GMG method 

 
Another important aspect is the effect of the stencil configuration on the performance of the GMG method (Figure 22). We 
considered the 7-point stencil with RBGS smoother and the 19-point and 27-point stencil with Jacobi smoother. The 19-point 
and 27-point stencils require 40% and respectively 155% more execution time to reach a similar level of accuracy. However, 
opposed to the analysis performed for different GMG schemes, different number of smoothing steps, and single/double 
floating point precision, we cannot state that one approach performs better than the others. Practically, for each stencil 
configuration a different problem is solved: although the analytical equations are the same, the different discretization 
schemes lead to different numerical equations.  
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Figure 22: Effect of stencil configuration on GMG performance 

 
Finally, we compare the performance of the best performing GMG variant (V-cycle, 312 smoothing steps) with the optimized 
PCG method, in double precision. We considered different fine grid resolutions and the three different discretization schemes. 
The results in Table 1 indicate that on the fine grid of 129x129x129 GMG offers a speed-up of 7.1x-9.2x over PCG, while it also 
leads to a smaller average residual. The speed-up is smaller on the intermediate grid, while on the coarse grid, PCG performs 
slightly better. This is given by the fact that for GMG the parallelism on the coarse grid (33x33x33) is limited, whereas for PCG 
the size of matrix A is still large enough to utilize the computational power of the GPU. In practice, typically used grids have 
more than 1 million nodes, case in which the GPU based GMG implementation performs better than the GPU based PCG 
implementation. While GMG offers these execution time advantages over PCG, it requires information regarding the 
underlying PDEs to be solved in order to generate different levels of discretization. On the contrary PCG only requires 
information regarding the discretization on the fineste level. Thus, the higher performance of GMG comes at the cost of a 
tighter link with the specific mathematical model which has to be solved numerically. 
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Table 1: Execution time and average error comparison for GMG and PCG 

Fine grid resolution 129x129x129 65x65x65 33x33x33 
Method PCG GMG PCG GMG PCG GMG 
RBGS  
7p stencil 

Avg. Error 5.22e-12 1.44e-14 1.41e-11 1.66e-14 4.21e-11 1.43e-14 
Time [ms] 1118 121 124 50 28 33 

Jacobi 
19p stencil 

Avg. Error 5.21e-12 7.00e-14 1.25e-11 6.99e-14 3.89e-11 6.79e-14 
Time [ms] 1255 172 127 48 28 32 

Jacobi 
27p stencil 

Avg. Error 4.30e-12 1.49e-13 1.40e-11 1.17e-13 2.94e-11 1.19e-13 
Time [ms] 1502 211 145 61 29 35 

 
 

8.2 GPU accelerated information retrieval using Bloom filters 
8.2.1 Introduction 
Semantic indexing is a popular technique used to access and organize large amounts of unstructured text data. Semantic 
search seeks to improve document retrieval accuracy by understanding searcher intent and the contextual meaning of terms 
as they appear in the searchable data space, whether on the web, or within a closed system. 
The Bloom filter [Bloom, 1970], conceived by Burton H. Bloom in 1970, is a space-efficient probabilistic data structure (a binary 
array) that is used to test whether an element belongs to a set. Bloom Filter based algorithms are part of the major families of 
string matching with specific features, that makes them a great candidate for applications such as distributed databases or 
cache-membership protocols: in checking whether a data item exists at a specific location, one needs only to receive a small bit 
array to be checked locally, without unnecessarily querying the remote database. However, string matching technology now 
encounters new challenges because of increasing amounts of data and stringent response time requirements. This is the 
reason why improving the underlying implementation of string matching algorithms becomes critical.  
Research activities into GPU accelerated string matching for applications in information retrieval discuss the utilization of 
programmable pipeline Graphics Processing Units (GPUs) for high speed string matching [Gee, 1987]. The process of mapping 
and searching is responsible for a large percentage of the computational load even though it is mathematically and 
algorithmically fairly simple. Therefore, increasing the speed of these operations could improve computing performance. 
The goal of the current work was to evaluate the viability of using GPUs to speed-up the Bloom filter based string searching 
algorithm. Moreover, to increase the information retrieval accuracy, several preprocessing techniques have been considered.  
 

8.2.2 Methods and implementation 
The Bloom filter offers a compact probabilistic approach to represent a set that can result in false positives (claiming an 
element to be part of the set when it was not actually inserted), and no false negatives (i.e. it never reports an inserted 
element to be absent from the set). The probability of false positive results can be controlled. 
The basic operations involve adding elements to the set and querying for element membership in the probabilistic set 
representation. The accuracy of a Bloom filter depends on the size of the filter, the number of hash functions used in the filter, 
and the number of elements added to the set [Broder et al., 2003]. 
Although the Bloom Filter may report false positive results, the false-positive probability can be controlled (lowered) by 
choosing proper filter parameter values.  
The two main operations of the Bloom filter, the generation of the filter from a set of words, and the testing operation, can be 
parallelized. This inherent parallelism of the algorithm can be exploited on a GPU, which contains several streaming 
multiprocessors, each of them containing  several  cores. In the following we introduce the overall workflow of the CPU-GPU 
based hybrid Bloom filter implementation (Figure 23). 
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Figure 23: Workflow of the CPU-GPU version 

 
First, several text files are read, which are subsequently used to generate associated Bloom filters. In the following several 
preprocessing techniques are applied. First, the text is tokenized: the stream of text is broken down into words, and spaces and 
punctuation marks are removed. Next, a predefined set of stop words [*Stop words, 2009] is removed from the input data. 
Finally, stemming is applied in order to reduce inflected or derived words to their word stem, base, or root form.  
The threads in the execution configuration for the Bloom filter generation are organized as follows: each thread block 
processes one input file, and each thread processes one word. If a text file contains more words than threads, each thread will 
process several words. For a precise identification of the input data to be used by each thread of the kernel, aside from the 
array containing the text information, two additional arrays are precomputed and transferred to the GPU: an integer array 
containing the start index for each word in the char array, and a second integer array containing the start index for each file. 
Once the Bloom filter has been generated, it is stored in the global memory, and another kernel is launched which performs 
the query operation. The execution configuration is set as follows: each thread block processes one Bloom filter vector, and 
each thread tests a query word for its membership. 
Next, the query results are copied back to the host memory. Finally, the documents are ranked based on their relevance 
relative to the query, and they are displayed to the user. Relevance rankings of documents in a keyword search is calculated 
using the assumptions of document similarity theory [Turnley et al., 2010], by comparing the deviation of angles between each 
document associated vector and the original query vector, where the query is represented in the same vector space model.  
In the following, we focus on the filter generation kernel (Algorithm 1 displays the pseudocode of the map Bloom kernel 
function). In the mapping process, when scanning the corpus, each word is hashed against its corresponding Bloom filter 
vector stored in global memory by a separate CUDA thread (lines 6 to 9 in Algorithm 2). Because each word is mapped 
simultaneously by different threads, this leads to multiple accesses to the same memory buffer. To avoid race conditions, 
atomic operations [*NVIDIA, 2015] are used. 
 

Algorithm 2.  Parallel Bloom Filters mapping operation 
1:  Input: words from text files  
2:  Input: index of each word beginning 
3:  Input: index of each file beginning 
3:  Output: Bloom vector for each file                                                       
4:  for all text files do 
5:          initialize all-zero bitVector  of size m  bits 
6:          for each word in current text file (denoted x) do 
7:                  for each hash function h do 
8:                          bitVector[hashh (x)] = 1 
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  9:                  end  for 
10:          end  for 
11:  end  for 

 
Since global memory operations have a large latency, and some of these operations are performed atomically, we also 
consider an optimized implementation, for which shared memory is employed. Instead of performing write operations on the 
filter in global memory, each thread block uses a local shared memory array to generate a local filter. This is possible since the 
global filter has a preallocated segment for each file. Once all threads of a thread block have finished the processing (a 
synchronization barrier is used), the locally generated Bloom filter is copied into the global memory, into the corresponding 
segment. Atomic operations are still required, but since they are performed in the shared memory, the latency is significantly 
lower. 
 

8.2.3 Results 
To evaluate the performance of the different implementation versions of the Bloom filter application, we used an Intel i7 8 
core at 3.4 GHz, and a NVIDIA GTX Titan Black graphics card. To test the above-mentioned developments, a publicly available 
benchmark dataset consisting of unstructured text files were used, gathered from articles in various scientific domains such as 
bioinformatics, molecular physics, astronomy, etc. Experimental tests revealed that the average number of words per article is 
of around 330. 
To process the text files, the map Bloom kernel generates a number of thread blocks equivalent to the number of mapped files, 
whereas each block of threads contains 512 threads. If the number of files is greater than the maximum number of thread 
blocks, the data is processed in sequential batches. Similarly, if the number of words in a document is larger than 512, each 
thread processes several words. 
Next, we focus on the comparison of the CPU and the hybrid CPU-GPU implementation of the Bloom filter application. 
Computational results were perfectly identical for both versions. First, we analyze the execution time improvements for the 
parts that were ported to the GPU. All execution times reported below are computed as average value over 10 runs.  
Table 2 displays the execution times results for the mapping operation, when different number of files are used. Three 
different versions were considered: the CPU version, the GPU version which uses only global memory, and the optimized GPU 
version which additionally employs shared memory. For the latter two, we additionally display the speed-up. One can observe 
that both GPU based implementations significantly outperform the CPU based implementation: execution time decreases by 
more than two orders of magnitude (the speed-up stabilizes at around 300x). Secondly, if more than 500 files are used the 
optimized GPU based version is roughly three times faster than the baseline GPU version. If the number of files is smaller, the 
differences become even larger. This performance gap is given by the latency of the global memory operations. 
 
Table 2:Average execution time and speed-up analysis for the map bloom operation, for varying number of files 

Number 
of files 

CPU exec. 
time [ms] 

Baseline GPU version Optimized GPU version 
Exec. time [ms] Speed-up Exec. time [ms] Speed-up 

50 66.9 3.793 0.288 17.638 232.292 
100 100.3 4.891 0.476 20.507 210.714 
250 263.3 6.041 1.051 43.585 250.523 
500 579.3 7.708 1.905 75.156 304.094 
750 893.7 9.389 2.773 95.186 322.286 
1000 1162.1 11.120 3.681 104.505 315.702 
2000 2390 18.144 7.050 131.724 339.007 

 
Next, we analyzed the effect of the number of hash functions on the execution time of the mapping operation (the number of 
files is maintained constant at 1000). Since the optimized GPU based version outperforms the baseline implementation, in the 
following only this version is considered. The number of hash functions directly influences the false positivity rate, which is also 
displayed in Table 3. The results indicate that even when the number of hash functions decreases drastically, the speed-up is 
still maintained at a high level (around 200x). This is given by the fact that the hash functions are computed for a single word in 
a sequential manner, both on the CPU, and on the GPU. 
 
Table 3: Average execution time and speed-up analysis for the map bloom operation, with varying number of hash functions 

Number hash 
functions (k) 

False-positivity 
rate (p) 

CPU execution 
time [ms] 

Optimized GPU 
execution time [ms] 

Speed up 

2 0.2 170.527 0.874 195.060 
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3 0.1 267.936 1.224 218.936 
4 0.05 395.727 1.574 251.494 
7 0.01 710.218 2.627 270.330 
8 0.005 844.164 2.977 283.599 

10 0.001 1089.273 3.681 295.938 
11 0.0005 1198.200 4.039 296.657 

 
The second kernel focuses on the search operation. Typically, the mapping process is performed offline, while the search is 
performed online. Hence, the execution time results are especially critical for the latter operation. Table 4 displays the 
execution time and speed-up results obtained for a search request containing 20 words, and for a Bloom filter based on 
varying number of files. The speed-up is significant, although not as large as for the mapping operation. Again, a relatively 
stable speed-up value, approx. 20x, is reached when over 500 files are used in the search operation.  
 
Table 4: Average execution time and speed-up analysis for the query operation, with varying number of files 

Number of 
files 

CPU execution 
time [ms] 

GPU execution 
time [ms] Speed up 

50 0.775 0.157 4.926 
100 1.326 0.155 8.556 
250 3.655 0.237 15.408 
500 6.106 0.341 17.907 
750 8.807 0.442 19.908 

1000 11.024 0.554 19.897 
2000 20.514 0.908 22.603 

 
Next, we kept the number of files constant (at 1000) and varied the number of words in the query. The results are displayed in 
Table 5. An almost linear dependence between the speed-up and the number of words can be observed. 
 
Table 5: Average execution time and speed-up analysis for the query operation, with varying number of query words 

Number of 
query words 

CPU execution 
time [ms] 

GPU execution 
time [ms] Speed up 

5 3.102 0.480 6.465 
10 5.875 0.522 11.244 
15 8.731 0.529 16.493 
20 11.024 0.554 19.897 
25 15.097 0.565 26.716 

 
Finally, we display in Table 6 the execution time of the entire application, consisting of both mapping and querying operations, 
in the configuration with 2000 files, 10 hash functions, and 20 words in the search query. One can observe that the reading and 
preprocessing of the files takes the majority of the execution time. However, since this step is performed offline, it is not 
critical. Next, for the map Bloom operation, for the GPU based workflow two execution times are displayed: one for copying 
the input data to the global memory of the GPU, and one for the actual mapping operation. Similarly, for the query operation, 
once the search results have been determined, the results are copied back to the CPU for ranking and visualization. 
 
Table 6: Execution time for each operation 

Operation CPU execution 
time [ms] 

GPU execution 
time [ms] 

Read + preprocess 
files 11951.3 

mapBloom 2390 
8.744 (copy) 
7.050 (exec.) 

testBloom 32.9 
0.908 (exec.) 
0.273 (copy) 

Compute Ranking 9.6 
Total 14383.8 11977.904 
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8.3 GPU–Accelerated Texture Analysis Using Steerable Riesz Wavelets 
8.3.1 Introduction 
Textured pattern recognition is a key research topic in computer vision. One of the fundamental concepts in this area is the 
characterization of the local organization of image scales and directions to identify patterns [Blakemore et al., 1969]. Although 
much research has been carried out on this topic [Crick et al., 1980], [Zhang et al., 2007], it has proven difficult to elegantly 
exploit the potential of local attributes for classification. Depeursinge et al. proposed an iterative multi–scale and rotation–
covariant texture learning approach using steerable Riesz wavelets [Depeursinge et al., 2014], [Depeursinge et al., 2013]. The 
framework allows learning local computational models (or distinctive signatures) of patterns. Subsequently, the models yield 
feature vectors that are optimally discriminant for a given problem. Classification accuracies of up to 98.4% were reported on 
databases such as Outex1. However, the algorithm requires days of computation for large databases. To improve its 
usefulness, the computations have been parallelized on GPUs.  
 

8.3.2 Methods and implementation 
Nth–order Riesz wavelets are used here to learn the texture signatures. This starts with the convolution of Riesz filters with 
training images in order to obtain Riesz coefficients. Their respective energies are derived and used to create Support Vector 
Machine (SVM) models, while following a one–versus–all (OVA) supervised learning strategy [Depeursinge et al., 2014]. Using 
the steerability property of Riesz wavelets, they are tuned to achieve local alignment at each pixel. The aligned coefficients 
form part of the final feature vector that can be used for texture classification. 
Table 7 outlines the algorithm components and their percentage of the total run time. Alignment of signatures is the most 
computationally intensive operation of the application. Figure 24 illustrates the workflow for signature alignment. For each 
pixel, the computation of the maximum response requires solving a Nth–order trigonometric polynomial [Depeursinge et al., 
2014]. Since the alignment can be performed independently for all pixels, the GPU becomes a well-suited option for greatly 
decreasing run time.  
 
Table 7: Percentage of time spent by each major component within cpu based application 

 
 

 
Figure 24: Part of the workflow around the pixel–wise local alignment of Riesz coefficients using the Riesz templates, Gamma 

 
We first introduce a baseline GPU based implementation of the texture learning approach where all computations are 
performed in double precision. The GPU based implementation (called GPUBase) covers the actual computation of the feature 
vector. Since computing the responses takes around 99.28% of the execution time, it represents the main focus of the 
parallelization activities. A significant amount of data is required to reside on the GPU (requiring expensive copy operations), 
whereas the number of actual computations needed for computing the responses is small. This limits the throughput and we 
identify as main approach for performance improvement an increase in compute intensity [Zhong et al., 2014]. To increase 
compute intensity the implementation covers also the computation of polynomial roots and the maximum response 
extraction, along with a series of other operations that include trigonometric operations applied to the computed roots. The 
GPUBase version is divided into two parts: the computation of polynomial roots and the feature vector computation. In the 
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first part, each thread stores all N + 1 coefficients of the associated polynomial, and all real roots are computed. To determine 
these roots, we combine Newton’s method that allows us to approximate one root of a polynomial with Horner’s method for 
polynomial long division [Gautschi, 1997]. In the second stage, the feature vector is built by regional averaging of the energies. 
Each thread updates locations (based on the number of real roots found by the thread) from the feature vector. Next, the local 
orientations of each template are optimized to maximize their response, which is carried out by aligning Riesz components 
based on the dominant orientation of the signatures [Depeursinge et al., 2014]. For the GPUBase version these steps are 
included in the kernel, since no additional data are required. 
Since data in the GPUBase version are stored in the global memory, and the performance of the kernel is primarily affected by 
the global memory bandwidth, we first address this aspect.  
1) Register Usage: We use registers to store data that are otherwise repeatedly loaded: for the GPUBase version this strategy is 
applied for the values computed through trigonometric and associated operations. Since several intermediate computations 
are performed, by placing the partial results into registers, and merging the repetitive loop structures, a new enhanced 
implementation (GPUReg) is obtained (Figure 25). To further reduce global memory access, we introduce another version 
(GPURegGlM), in which we store the arc-tangent value for a root in an additional register. First the data are read from the 
register and stored into the global memory as it is required in the end, then, for the sine and cosine operations, the data 
cached in the register are used.  
 

 
Figure 25: Simplified kernel code for (a) GPUBase, and (b) GPUReg 

 
2) Shared Memory Usage: Since the storage of the majority of the data in shared memory could lead to exceeding the 
maximum amount of available memory when higher Riesz order and/or higher image resolution are employed, the utility of 
this type of memory is limited herein. The starting point for the new kernel is the GPUReg version. Only one data set 
(describing the weights of the Riesz components based on SVM coefficients) is small enough to not exceed the maximum size 
of the shared memory. The drawback of the first strategy, GPUShM, is that we write in the shared memory only if the local 
index is less than (N+1). Thus, if N is much lower than the total number of threads within a block only a small number of 
threads writes in the shared memory array, leading to divergent branches and hence to serialization. Shared memory can also 
be used to store data that cannot be put into registers and are repeatedly accessed by a thread [Vizitiu et al., 2014]. We 
observe that in GPUReg there are data (values within arc–tangent array) that are accessed multiple times by each thread. 
Because the values are not shared among multiple threads, we change the memory space in which data are stored without any 
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need of synchronization. 
 

8.3.3 Results 
We evaluate the different texture learning strategies using a hardware configuration based on an Intel Core i7 3.8 GHz 
processor with 64GB of memory and an NVIDIA GeForce GTX TITAN Black GPU, configured with 48KB of shared memory and 
16KB of L1 cache, compute capability 3.5 and the CUDA toolkit version 6.0. The overall workflow of the application is 
implemented in Matlab, and the parallelizable components are implemented in C++ for the CPU based version, and in CUDA 
for the GPU-based versions. We first analyse the execution times for a configuration with a Riesz order of 8 and an image size 
of 128 x 128 (the CPU C++ based version, CPUBaseline, was considered alongside the 5 GPU based versions). We chose the 
total number of threads to be equal to image width x image height. Regarding the distribution of threads and blocks: while for 
most of the versions we adopted a standard number of 1024 threads per block, for the versions that use shared memory the 
number of threads is limited by the maximum size of this type of memory. The results are shown in Table 8.  
 
Table 8: Execution times [s] of implementations for a single time step, when riesz order and image size are set to 8 and 128x128 
respectively. 

 
 
All GPU–based versions lead to a significant speed–up compared to the CPU–based version. The best performance is obtained 
for GPUReg, leading to a significant reduction of the execution time (98.9%), as compared to CPUBaseline. GPUReg improves 
data reuse and reduces global memory accesses by employing additional registers. The GPURegGlM version continues to 
reduce global memory load operations by using an additional register and as a result the execution time compared to the 
baseline GPUBase is decreased by 26%, but it increases slightly when compared to GPUReg: the larger number of registers 
limits the number of blocks of threads that can run simultaneously. Next, shared memory is used in two versions to reduce 
latencies and global bandwidth usage: the first version (GPUShMTha) is limited by the shared memory size and therefore 
occupancy decreases, while the second implementation (GPUShM) performs slower than the baseline GPUBase version due to 
the massive warp serialization requirements. 
Next, we determined the computation time of the entire application, when using the best performing GPU based version 
GPUReg and the CPU based version CPUBaseline. The results are displayed in Table 9. The computation time decreases from 
70.87 hours to 2.39 hours (speed–up of 29.58x). The Riesz order and the image size have a considerable impact on the 
execution time, since they affect the level of parallelism. We considered the best performing GPU based implementation and 
determined the speed–up of the parallelizable part for: (a) four different Riesz orders (8, 10, 12 and 14) with image size set 
constant at 128x128, and (b) four different image sizes (128 x 128, 256 x 256, 512 x 512, 1024 x 1024) with Riesz order N = 8 
(Figure 26). When the Riesz order increases from 8 to 14 the speed–up changes from 93x to 148x. Similarly, as the image size 
increases to 1024 x 1024, the speed–up increases to 235x. The results indicate that once the image resolution increases 
beyond a certain threshold the speed–up curve flattens since the occupation of the GPU decreases substantially (due to the 
larger number of registers). 
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Table 9: Execution times [s] of the entire matlab riesz–based texture classification where the parallelized parts implemented in c/c++ and 
cuda were integrated 

 
 

 
Figure 26: Comparison of speed–up obtained with the best GPU based implementation over the CPU based implementation with different 

(a) Riesz orders and (b) image dimensions 
 

8.4 GPU-accelerated model for fast, three-dimensional fluid-structure interaction 
computations 

8.4.1 Introduction 
Fluid-Structure interaction (FSI) consists in simulating the fluid flow in a domain with moving boundaries. The boundary 
displacement may be known and directly enforced (one-way FSI) or may be computed from the interaction with a solid model 
which uses as input the stresses given by the fluid (two-way FSI). For arterial circulation simulations, the vessel wall is usually 
modelled as a viscoelastic material and the displacements are computed using a finite element method (FEM) based solver. 
The other approach consists in performing a one-way coupling, whereas the vessel wall displacement is directly extracted from 
patient-specific image data and is enforced onto the flow simulation. Similar work has been done in [Lantz et al., 2014] where a 
commercially available FEM based solver was used to simulate the blood flow in the human aorta by incorporating patient-
specific wall motion. 
Herein, we present an efficient workflow for embedding the wall motion, given as a set of polygonal meshes, into a Lattice-
Boltzmann (LBM) simulation. We use a GPU accelerated LBM implementation for fast computations. We used the proposed 
method to perform simulations of the 3D peristaltic flow problem [Shapiro et al., 1969]. 
 

8.4.2 Methods and implementation 
LBM is based on a discrete representation of the linearized Boltzmann equation on a regular Cartesian grid. The method 
consists of two steps, called collision (1) and streaming (2) which are applied at each grid point. The implementation is based 
on a multiple relaxation time (MRT) collision operator and a three-dimensional 19-velocity lattice [d’Humieres et al., 2002]. For 
more information on LBM we refer the reader to [Yu et al., 2003]. For the one-way FSI approach the wall motion is given as 
input data and is not influenced by the flow properties. Herein, the time-varying geometry is given as a set of polygonal 
meshes, each describing the wall position at a moment in time. Based on the given time samples, we compute the Discrete 
Fourier Transform (DFT) for each node in the mesh. The wall position and velocity can then be determined at any given time by 
evaluating the inverse Fourier transform. The motion of the wall is usually both periodic and smooth, hence the Fourier 
spectrum of the given time-varying geometry contains a small number of modes. This makes the DFT based approach more 
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convenient than a regular interpolation between the time samples. The DFT is only computed in the pre-processing stage, 
whereas during the simulation only the inverse transform is evaluated to reconstruct the geometry at the current time. To 
determine the wall velocity at each node, we compute analytically the time derivative of the inverse transform. The mesh is 
embedded in the Cartesian grid by computing the signed distance f(x) for each point x in the grid. This step is also exclusively 
done in the pre-processing stage. Lattice nodes are labeled as fluid or solid nodes and herein we assume that the distance f(x) 
< 0 for fluid nodes, and f(x) > 0 for solid nodes. The size of the grid is given by the spatial resolution dx and the size of the 
smallest bounding-box large enough to fit the geometry at any time. Given the signed distance at each grid node, the fluid 
region of the domain can be accurately identified. Depending on how complex the geometry is, the fluid region will regularly 
occupy only a small portion of the entire domain. To reduce memory requirements, we use a sparse grid implementation 
based on an indirect addressing scheme [Nita et al., 2013]. When the geometry is updated, the fluid region of the domain 
changes: some fluid nodes become solid nodes and vice versa. To avoid the requirement of regenerating the grid when the 
geometry is updated, all nodes that are labeled as fluid nodes for at least one-time step are identified in the pre-processing 
stage (all these nodes are considered when generating the sparse grid). As the mesh is changing in time, the grid nodes need to 
be updated as well. This process consists in looping over all facets and computing f(x) for each grid node located close to the 
current facet. This operation updates the distance function only for a few layers of nodes close to the boundary, while the 
other grid nodes are not affected. It is not required to update all grid nodes since the exact distance to the boundary is only 
required at the boundary nodes i.e. nodes that have a neighboring node located outside the mesh.  
Since updating the geometry is a computationally expensive operation, it is not performed at each time step. The time interval 
after which the geometry is updated is chosen so as to have a maximum displacement smaller than 0.5dx. This significantly 
improves performance since the time-step of one LBM iteration is much smaller than the time interval for updating the 
geometry. Since the wall velocity is described by its Fourier spectrum, it is not straightforward to find the maximum velocity 
analytically. Instead we used a numerical approach that computes the value iteratively. When the geometry is updated, the 
wall velocity uw is associated to each grid node close to the wall, along with the new signed distance f(x). The wall velocities are 
enforced on the fluid boundary nodes during the streaming step.  
All computational steps are implemented with CUDA and run on the GPU. 
 

8.4.3 Results 
We applied the model to study 3D peristaltic flow: a configuration in which a periodic deformation of the walls generates net 
fluid motion. Here, the geometry is given by a spatially periodic cylindrical vessel, where a periodic deformation function is 
applied to its walls. The experiment setup was previously described in [Connington et al., 2009]. In Figure 27, we present the 
geometry along with the flow vectors. Both the inlet and outlet were periodic boundaries. The fluid motion is given only by the 
wall deformation. 
Figure 26 displays the results: the simulated flow rates match the known solution closely, with a maximum absolute error of 
0.17 mm3/s, and an average absolute error of 0.11 mm3/s. Furthermore, we performed experiments with different values for 
the Reynolds number, to observe its effect on the flow regime. The Reynolds number was changed by adapting the wave 
speed, while the other parameters were maintained constant.  
 

 
Figure 27: Peristaltic flow simulation. Comparison between the measured average flow rates and the exact solution 
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In Figure 28, we present the streamline plots of the flow with Re varying between 1 and 100. To observe the closed 
streamlines, the flow is viewed in a frame of reference moving at half of the wave speed. The two counter-rotating vortices 
decrease in size as the Reynolds number increases. Furthermore, the pumping efficiency was found to decrease. When 
compared to the analytically computed flow rate, the measured flow rate was 13% and 35% smaller for Re = 10 and Re = 100 
respectively. The closed streamlines were previously reported in [Connington et al., 2009] but under different circumstances, 
characterized by high amplitude ratio, where the fluid is trapped inside the bolus and is moving along with the wave. The 
simulations were run on a commercially available graphical processing unit (GeForce GTX TITAN Black) with a spatial resolution 
of dx = 0.15mm and a time step of dt = 57ms. The average execution time was of around one hour for one simulation, which 
consisted of five wave periods. Roughly 50% of the total execution time accounts for the geometry update process. 
 

 
Figure 28: Peristaltic flow streamlines for different Reynolds numbers when the reference frame is moving at half of the wave speed 

 

8.5 GPU-accelerated voxelizer 
8.5.1 Introduction 
Performing a Fluid-Structure interaction (FSI) using the Lattice-Boltzmann method (LBM) requires the moving geometry to be 
embedded into a Cartesian grid of uniformly distributed points using a signed distance field 𝜙𝜙(𝐱𝐱). However, the geometry is 
typically given as a sequence of non-uniform polygonal meshes. A surface voxelization operation is required to compute the 
distance field. The main challenge of voxelization consists in associating each vertex 𝐯𝐯𝑖𝑖  of a polygonal mesh to each node 𝐱𝐱𝑖𝑖 of 
the Cartesian grid. Typically, the size of the grid is between 500,000 and 50,000,000 nodes while the size of the mesh is 
between 50,000 and 300,000. This makes the voxelization a computationally expensive operation. 
For the FSI computations, since the surface is moving, the voxelization operation is required at each solver iteration to update 
the position of the surface. With the classical method (CPU based implementation), the surface voxelization operation is the 
performance bottleneck as it occupies around 50% of the total computation time [Nita et al., 2015]. Therefore, it is crucial that 
an efficient implementation is developed. 
 

8.5.2 Methods and implementation 
8.5.2.1 The classical method 
The Cartesian grid is defined from a three-dimensional image by its dimensions (𝑁𝑁𝑥𝑥,𝑁𝑁𝑦𝑦 ,𝑁𝑁𝑧𝑧), an origin 𝐨𝐨 and a grid spacing 𝛿𝛿𝛿𝛿 
(the grid nodes are uniformly distributed hence 𝛿𝛿𝛿𝛿 = 𝛿𝛿𝛿𝛿 = 𝛿𝛿𝛿𝛿). The grid size is chosen to satisfy the flow solver stability 
constraints. The origin 𝐨𝐨 and the grid spacing 𝛿𝛿𝛿𝛿 is used to transform from physical coordinates to grid coordinates (and vice 
versa) i.e. to find the voxel (𝑖𝑖, 𝑗𝑗, 𝑘𝑘) that corresponds to a point  𝐩𝐩 = (𝑝𝑝𝑥𝑥 , 𝑝𝑝𝑦𝑦 , 𝑝𝑝𝑧𝑧). The transformation is defined as follows: 

𝑖𝑖 = �𝑝𝑝𝑥𝑥
𝛿𝛿𝑥𝑥
− 𝑜𝑜𝑥𝑥�, 𝑗𝑗 = �𝑝𝑝𝑦𝑦

𝛿𝛿𝑥𝑥
− 𝑜𝑜𝑦𝑦� , 𝑗𝑗 = �𝑝𝑝𝑧𝑧

𝛿𝛿𝑥𝑥
− 𝑜𝑜𝑧𝑧�, (1) 

Where ⌊𝛿𝛿⌋denotes the floor function. And the inverse transformation: 
𝑝𝑝𝑥𝑥 = 𝑖𝑖𝛿𝛿𝛿𝛿 + 𝑜𝑜𝑥𝑥, 𝑝𝑝𝑦𝑦 = 𝑗𝑗𝛿𝛿𝛿𝛿 + 𝑜𝑜𝑦𝑦, 𝑝𝑝𝑧𝑧 = 𝑘𝑘𝛿𝛿𝛿𝛿 + 𝑜𝑜𝑧𝑧 , (2) 
A mesh is defined as a set of triangles 𝑇𝑇 = (𝐯𝐯1, 𝐯𝐯2, 𝐯𝐯3), for each triange we compute an axis-aligned bounding-box (AABB) as 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝐯𝐯𝑚𝑚𝑖𝑖𝑚𝑚 , 𝐯𝐯𝑚𝑚𝑚𝑚𝑥𝑥) so that the triangle will completely fit inside it, furthermore the AABB is enlarged in all directions using a 
small value (2 − 3δx) so that the triangle vertices will never be located exactly on the AABB wall.  
The classic method for surface voxelization consists in simply looping over each grid node 𝐱𝐱𝑖𝑖 in each AABB and computing the 
signed distance 𝜙𝜙(𝐱𝐱𝑖𝑖). To find all the grid nodes inside the AABB, one needs to transform (𝐯𝐯𝑚𝑚𝑖𝑖𝑚𝑚 , 𝐯𝐯𝑚𝑚𝑚𝑚𝑥𝑥) to grid coordinates to 
get (𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 , 𝑗𝑗𝑚𝑚𝑖𝑖𝑚𝑚 , 𝑘𝑘𝑚𝑚𝑖𝑖𝑚𝑚) and (𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥 , 𝑗𝑗𝑚𝑚𝑚𝑚𝑥𝑥 , 𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥) and then loop over all 𝑖𝑖, 𝑗𝑗 and 𝑘𝑘 values located inside the bounds. 
The signed distance function is defined as follows: 
𝜙𝜙(𝐱𝐱) = 𝑑𝑑(𝐱𝐱, 𝐱𝐱⊥)𝑠𝑠𝑠𝑠𝑠𝑠[(𝐱𝐱 − 𝐱𝐱⊥) ⋅ 𝐧𝐧], (3) 
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Where 𝐧𝐧 is the triangle normal and 𝐱𝐱⊥ is the closest point to 𝐱𝐱 on the triangle. The second factor in the above expression 
represents the sign, i.e. it will be negative or positive depending on which side of the triangle, the point 𝐱𝐱 is located. For 
adjacent triangles the AABBs will intersect and will result in multiple 𝜙𝜙 values for the same grid point 𝐱𝐱, one value for each 
AABB that point 𝐱𝐱 is included in (Figure 29). In this case the absolute minimum value of 𝜙𝜙 will be chosen. 
For the GPU implementation, the loop that processes the mesh triangles is parallelized so that one GPU thread will process one 
triangle. However there are several downsides that causes very poor GPU utilization in this case. The main problem arises at 
the adjacent triangles where the AABBs intersect. In the intersection regions, there will be multiple threads that need to 
update the 𝜙𝜙 value at the same grid node 𝐱𝐱. In this case a synchronization operation is required to ensure that only one thread 
will update one location at the same time. The synchronization operation drastically reduces parallelism and GPU 
performance.  
The other limitation is given by the fact that each GPU thread will process a different number of grid nodes because of the 
different AABB sizes. More specifically, the number of the grid nodes in an AABB is influenced by the size and orientation of the 
corresponding triangle. To achieve maximum performance with a GPU based implementation, all the threads should execute 
the same operations. 

 

 
Figure 29: Two-dimensional analogy of the surface voxelization algorithm. The classic approach (up): ϕ is computed for all the nodes 
inside an AABB. And the separating planes technique (down): nodes that correspond exclusively to a facet are identified using sepa 

 

8.5.2.2 The separating plane technique 
The classical method can be improved by redefining the way grid nodes are associated with mesh triangles. Instead of 
computing the 𝜙𝜙 value for all the nodes in an AABB it is possible to identify a priori the nodes for which each mesh triangle will 
give the minimum 𝜙𝜙. Hence, there will no longer be threads that will need to update 𝜙𝜙 at the same location 𝐱𝐱. This method 
was initially presented in [Janßen et al., 2014]. 
For each triangle we define a region so that each point 𝐱𝐱 in that region has the closest point 𝐱𝐱⊥ located on that triangle. To 
define such a region for a triangle, three planes are required, one for each edge. More specifically, if a node is located on the 
negative side of all three planes then that node is considered to belong exclusively to that triangle.  
We check if a point 𝐱𝐱 is located in a triangle region in the following way (Figure 30): 
1. For each vertex 𝐯𝐯𝑖𝑖  on the mesh, the vertex normal is computed as an angle weighted average of the normals of adjacent 

triangles: 
𝐧𝐧Σ = ∑𝛼𝛼𝑖𝑖𝐧𝐧𝑖𝑖

|∑𝛼𝛼𝑖𝑖𝐧𝐧𝑖𝑖|
  (4) 

2. For each edge �𝐯𝐯𝑖𝑖 , 𝐯𝐯𝑗𝑗�, with the associated vertex normals �𝐧𝐧𝑖𝑖 ,𝐧𝐧𝑗𝑗� a separating plane is defined: 
𝐧𝐧𝑠𝑠 ⋅ (𝐱𝐱 − 𝐯𝐯𝑖𝑖) = 0 (5) 
Where 𝐧𝐧𝑠𝑠 is the separating plane normal and is computed as an edge bi-normal: 
𝐧𝐧𝑠𝑠 = 1

2
��𝐯𝐯𝑗𝑗 − 𝐯𝐯𝑖𝑖� × �𝐧𝐧𝑖𝑖 + 𝐧𝐧𝑗𝑗��. (6) 

𝐧𝐧2 
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3. A point 𝐱𝐱 is considered to be located inside a region of a triangle 𝑇𝑇 = (𝐯𝐯1, 𝐯𝐯2, 𝐯𝐯3) if it is located on the negative side of all 

three separating planes: 

�
𝐧𝐧𝑠𝑠1 ⋅ (𝐱𝐱 − 𝐯𝐯1) ≤ 0
𝐧𝐧𝑠𝑠2 ⋅ (𝐱𝐱 − 𝐯𝐯2) ≤ 0
𝐧𝐧𝑠𝑠3 ⋅ (𝐱𝐱 − 𝐯𝐯3) ≤ 0

. (7) 

For any two adjacent, non-intersecting triangles, the regions defined by (7) will not intersect. If each GPU thread 
processes the nodes in separated regions then there will never be any concurrency hence the synchronization is no longer 
required. This drastically improves the GPU parallelism and performance. 

 

 
Figure 30: Defining a vertex normal as an angle weighted average of the normals from adjacent triangles 

Fig. 1.5.2.. 
 

8.5.3 Results 
To test our implementation we considered a known CFD benchmark case consisting of a large brain aneurysm [Steinman et al., 
2013]. Figure 31 displays the mesh along with the voxelized surface. 
 

 
Figure 31: Test case: a large brain aneurysm mesh of 318,000 triangular elements (up) and the voxelized surface (down) 
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The mesh contains 318,000 triangular elements and the size of the grid in which the surface is embedded is 171x180x142. We 
performed the computations for this case using the CPU and GPU implementations for both the classic and the separating 
planes method. The hardware we used consists of an Intel i7 (8-cores) CPU and a GTX Titan Black GPU. 
The execution times were: 
- for the classic method on the CPU the execution time was 23.5 seconds and on the GPU it was 234 milliseconds which 

gives a speedup of around 100 times. The GPU execution time does not contain the CPU-GPU memory copy as in an FSI 
simulation the memory copy should only be done once in the pre-processing stage.  

- for the separating planes method, the GPU execution time was 21.4 milliseconds. Compared to the current 
implementation that we use for FSI computations, the new GPU-accelerated one is around 1000 times faster. Using this 
approach, the performance of the FSI computations can be taken to an unprecedented level. 
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9 Conclusion 
The Infostructure is currently in Beta version. Almost all the functionalities are in place and the last sprint will mainly concern 
tests and fixes of all these applications, as well as finalising the integration between them. This makes the infostruture status 
to “corresponding to the planning” despite the issues encountered during the whole project that could have slowed down the 
advancement. On a hardware standpoint, the current installation can provide all the validation and the addition of the last 
nodes will provide a ready to use base for the following. 
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