
D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

Model Driven Paediatric European Digital Repository
Call identifier: FP7-ICT-2011-9 - Grant agreement no: 600932

Thematic Priority: ICT - ICT-2011.5.2: Virtual Physiological Human

Deliverable 14.3
Beta version Infrastructure Deployment Report

Due date of delivery: 29-02-2016
Actual submission date: 31-03-16

Start of the project: 1st March 2013
Ending Date: 28th February 2017

Partner responsible for this deliverable: MAAT
Version: 0.1

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

Dissemination Level: Public

Document Classification
Title Beta version Infrastructure Deployment Report
Deliverable 14.3
Reporting Period 3
Authors Sebastien Gaspard
Work Package 14
Security PU
Nature RE
Keyword(s) Beta version Infrastructure Deployment Report

Document History
Name Remark Version Date
Deliverable 14.3 0.1 03/02/2016
Deliverable 14.3 0.2 01/03/2016

List of Contributors
Name Affiliation
Sebastien Gaspard MAAT
Lucian Itu UTVB
Jérome Revillard MAAT
David Manset MAAT
Harry Dimitropoulos ATHENA
Emilie Pasche HES-SO

List of reviewers
Name Affiliation
Harry Dimitropoulos ATHENA
Bruno Dallapiccola OPBG

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

Abbreviations
DCV Data Curation and Validation
ETL Extract Transform Load
MG Multigrid Method
GPUs Graphics Processing Units
GUI Graphical User Interface
One–Versus–All (OVA) OVA
PCG Preconditioned Conjugate Gradient method
SVM Support Vector Machine
UDF User-Defined Function
CDR Clinical Data Repository
CBR Case-Based Retrieval

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

TABLE OF CONTENTS
1 Project summary ... 6

2 Executive summary ... 6

3 FedEHR a Clinical Data Repository (CDR) .. 7

3.1 Hardware Architecture ... 7

3.1.1 Current installed node .. 7

3.1.2 Planned node .. 7

3.2 Patient Centric model .. 7

3.3 FedEHR Data Distribution & Access Strategies ... 8

3.4 FedEHR Data access rights management .. 10

3.4.1 Model .. 10

3.4.2 Behaviour .. 11

3.4.3 Java/WebService API ... 11

4 Case-based retrieval service .. 14

4.1 Text based ... 14

4.2 Image based .. 15

5 DCV : Data Curation and Validation ... 16

6 AITON: Knowledge Discovery (KDD) and Simulation Platform... 17

7 Gnubila Anonymiser .. 19

7.1 Architecture .. 19

7.2 FedEHR Anonymizer Index Database .. 19

7.3 Anonymize files ... 19

7.4 Manage the Camel routes ... 20

7.4.1 Access to the graphical Camel environment ... 20

7.4.2 Visualize and Monitor your routes .. 21

7.4.3 Graphically customize Camel routes ... 22

8 GPU based processing and computation .. 24

8.1 GPU accelerated geometric multigrid method ... 24

8.1.1 Introduction .. 24

8.1.2 Methods and implementation .. 24

8.1.3 Results ... 26

8.2 GPU accelerated information retrieval using Bloom filters .. 29

8.2.1 Introduction .. 29

8.2.2 Methods and implementation .. 29

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

8.2.3 Results ... 31

8.3 GPU–Accelerated Texture Analysis Using Steerable Riesz Wavelets .. 33

8.3.1 Introduction .. 33

8.3.2 Methods and implementation .. 33

8.3.3 Results ... 35

8.4 GPU-accelerated model for fast, three-dimensional fluid-structure interaction computations 36

8.4.1 Introduction .. 36

8.4.2 Methods and implementation .. 36

8.4.3 Results ... 37

8.5 GPU-accelerated voxelizer .. 38

8.5.1 Introduction .. 38

8.5.2 Methods and implementation .. 38

8.5.3 Results ... 40

8.6 Publications ... 41

8.7 References... 41

9 Conclusion .. 42

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

1 Project summary
MD-Paedigree is a clinically-led VPH project that addresses both the first and the second actions of part B of Objective ICT-
2011.5.2:
1. it enhances existing disease models stemming from former EC-funded research (Health-e-Child and Sim-e-Child) and from
industry and academia, by developing robust and reusable multi-scale models for more predictive, individualised, effective and
safer healthcare in several disease areas;
2. it builds on the eHealth platform already developed for Health-e-Child and Sim-e-Child to establish a worldwide advanced
paediatric digital repository.
Integrating the point of care through state-of-the-art and fast response interfaces, MD-Paedigree services a broad range of off-
the-shelf models and simulations to support physicians and clinical researchers in their daily work. MD-Paedigree vertically
integrates data, information and knowledge of incoming patients, in participating hospitals from across Europe and the USA,
and provides innovative tools to define new workflows of models towards personalised predictive medicine. Conceived of as a
part of the “VPH Infostructure” described in the ARGOS, MD-Paedigree encompasses a set of services for storage, sharing,
similarity search, outcome analysis, risk stratification, and personalised decision support in paediatrics within its innovative
model-driven data and workflow-based digital repository. As a specific implementation of the VPH-Share project, MD-
Paedigree fully interoperates with it. It has the ambition to be the dominant tool within its purview. MD-Paedigree integrates
methodological approaches from the targeted specialties and consequently analyses biomedical data derived from a
multiplicity of heterogeneous sources (from clinical, genetic and metagenomic analysis, to MRI and US image analytics, to
haemodynamic, to real-time processing of musculoskeletal parameters and fibres biomechanical data, and others), as well as
specialised biomechanical and imaging VPH simulation models.

2 Executive summary
As an update of D14.2, this document will just present the novelties of the infostructure. To have an exhaustive view of the
platform, please refer to D14.2.
This document will first present the new dimension of the repository which is managing access rights, defining conceptually
and technically the new abilities of the system. Then, the GUIs offering new functionalities and the integration of HES-SO CBR
will be described, followed by the web version of Athena DCV and AITON, respectively managing curation and validation and
statistical models.
Following the usual order since D14.1, work on GPUs will end this presentation just after a presentation of the anonymiser
tools that gnúbila has provided to the project.
We remind the reader that all these components are coming in addition to the tools presented in deliverables D14.1 and D14.2
(we chose not to present them a third time in this document) and that this document does not by itself transcribe the entirety
of the amount of work provided during the project’s first three years.

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

3 FedEHR a Clinical Data Repository (CDR)
3.1 Hardware Architecture
3.1.1 Current installed node
Current architecture is composed of:

- 1 Node at OPBG Rome
- 1 Node at CCPM Taormina
- 1 Node at DHZB
- 1 Portal
- 1 Central Server

The existing installation provides one additional node at DHZB gained from Cardioproof collaboration.
The nodes are currently installed and connected together through a FastWeb secured connection. This allows all sites to share
information with ease.

3.1.2 Planned node
Added to the current installation, and despite the unavailibity of funds to cover the cost, KUL has provided a hardware that is
currently under installation to add a new node.
At the time beeing, GOSH is also planning to acquire hardware to provide an access point.

3.2 Patient Centric model
As described in the deliverable D14.2, the current description of FedEHR architecture provides an evolutionary structure of
data starting from the patient.

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

Figure 1: Patient-Centric Model

The FedEHR metamodel is by design easily evolvable and conceptually fully compatible with health modelling tools. Designed
to be simple and understandable by physicians and non-IT experts, FedEHR thus offers a simple, powerful and harmonized
patient-centric representation of EHR data.
The core system model can be synthetized as follows (for the sake of clarity, only the main objects are represented here).
The model revolves around the Patient concept. It is a global pattern for all medical information types. A Medical Event can
relate to one or several Patient(s) and Medical Staff. A Medical event is composed of a set of Clinical Variables, each of which
can be a simple value (i.e., blob, coded value, integer, float, measurement, etc.) or a more complex data (i.e., tree of values,
reference to a complex document stored in an external document or image repository, etc.).
A main concept called Clinical Variable Type is attached to Clinical Variable, which ensures semantic consistency, and thus
allows concepts from external terminologies such as HL7, SNOMED, ICD-10 (or any other) to be linked in to any clinical variable
or clinical variable type. This way, data can be turned meaningful while the original patient-centric model remains simple
enough to tackle any possible types of data faced in targeted health information systems.

3.3 FedEHR Data Distribution & Access Strategies
FedEHR allows for various data distribution strategies, useful to best-fit geographically dispersed and heterogeneous
data ecosystems. In FedEHR, data schemata are represented as trees, which can be physically partially or fully stored in
different backend instances. The following figure depicts the four possible distribution strategies.

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

Figure 2: Data Distribution

With full replication, top-left of the figure above, a complete database can be replicated between several sites, thus
avoiding single point of failure. This can be useful to RIS systems (Radiology Information Systems) where a high quality
of service is needed, in terms of access performance and load-balancing. Partial replication, top-right of the figure, has the
advantage of providing good scalability as data can be organized in sub-trees, each of which is managed independently, in
and by concerned sites. A federation of individual schemata, bottom-left of the figure, is the most interesting solution in
the present case, where manipulated data can potentially be highly sensitive. The latter ensures data collection,
ownership and control remain local, while providing harmonized access to authorized users. In this particular scheme,
users navigate a global data catalogue, whereas access to the data stored in individual sites is strictly regulated by the site
itself and according to local data protection rules. Finally, also worth noticing, a variant of FedEHR's federation strategy is
the federation with proxy redirection, bottom-right of the figure. Federation with proxy redirection allows sites not
equipped with IT to contribute data to an existing database. This can be of interest in the case of isolated medical offices,
for instance.
Syntactically speaking, FedEHR also provides connectors to mostly utilized database backend (from MySQL,1 to
PostgreSQL,2 to Oracle,3 SQLite,4 and Berkeley DB XML5) and offers a SQL (Structured Query Language)-like query
interface and transactional engine, thus harmonizing and strengthening querying over heterogeneous data sources,
irrespective of their locations and conforming to data confidentiality requirements.

1 MySQL is the world's second most widely used open-source relational database management system. It is named after co-
founder Michael Widenius's daughter, My.
2 PostgreSQL, often simply Postgres, is an open source object-relational database management system with an emphasis on
extensibility and standards compliance.
3 The Oracle Database (commonly referred simply as Oracle) is an object-relational database management system produced and
marketed by Oracle Corporation: www.oracle.com.
4 SQLite is a relational database management system contained in a small C programming library. In contrast to other database
management systems, it is not a separate process that is accessed from the client application.
5 Berkley Database engine EXtensible Markup Language

http://www.oracle.com/

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

3.4 FedEHR Data access rights management
3.4.1 Model
Taking advantages from the simple data model and distribution abilities, FedEHR implements a simple but powerful Role Based
Access Control (RBAC). Inspired from the literature and designed to respond to GDPR6 specifications, the model has been
enriched by a fine tuned access controlled piloted by the Data Protection Officer (DPO) of each centre.

Figure 3: Access Rights Management

Users are registered in a replicated table managed by the central node manging synchronisation between the different centres
of the shared system. This allows a shared view of users. For each centre DPOs can create groups referencing both user from
their local centre and external users.

6 GDPR : General Data Protection Regulation
http://www.europarl.europa.eu/meetdocs/2014_2019/plmrep/AUTRES_INSTITUTIONS/COMM/COM/2015/12-
17/COM_COM%282012%290011_EN.pdf

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

Groups represent the concept of “group of users”. Each group can be composed of a subset of users and reference a set of
Access Rights.
Access Rights defines the ability of groups on restricted objects. They are incremental and are giving rights as following:

• No Right: the concerned object cannot be viewed by the user; it cannot even be listed.
• Read: The user can see the restricted object.

o In the case of a patient, the user can see the patient available identity information, address, hospital and the
mist of Medical Event IDs attached

o In the case of a Medical Event, the user has access to the whole information of the event but not of the
patient

• Write: The user has the right to add and modify (when relevant) information he can see.
• Manage: This access allows user to give access rights to groups

3.4.2 Behaviour
Users register themselves at central node (on the shared portal) using a simple easy to understand wizard and get an account.
The registration can be directly onto the central node or delegated to a specific authentication authority (like EDUGAIN,
Facebook or LinkedIn) depending on the degree of security and project policies.

The connection does not give any access to the data. The registration makes identities available to the different DPOs to be
added to groups.

DPOs manage groups at the centre level, despite being centralised, users are assigned to local groups.
DPOs can define as many group as they want to create.
DPOs can manage all patients and medical events access rights.

3.4.3 Java/WebService API
3.4.3.1 Objects

Figure 4: Access rights Objects

Acl is composed of a grpAccessRight and a AclManagedObject. This object is used to get/set information about access rights.

GrpAccessRights is composed of a reference to a Group and a Sharing Type

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

Group represents the logical concept of groups, groups are managed by the DPO, have a name and references a list of users
acquiring all the GrpAccessRights the group have.

SharingType is the object that represents the ability of the group for one AclManagedObject. Read/Write and Manage are
stored in the DB, None is the default value and is only used to unset rights.

AclManagedObject is an abstract concept, it represents the own-ability of a object. Each AclManagedObject is created
associated to an owner who is a physician that is responsible of the attached data.

MedicalEvent and Patient are AclManagedObjects, they encapsulate the patient data.

3.4.3.2 Implemented API
A java/WebbService API is available to use the access right management. This API exposes all the secured functions that are
needed but one (DPO assignation). The functions are:

addGroup(Group)
what: add a group to the system
who: DPO

addGroups(Groups)
what: add a list of groups to the system
who: DPO

addUsers(Users)
what: add a group to the system
who: Imported from central Node

addUsersToGroup(GroupUsers)
what: assign Users to group
who: DPO

deleteGroup(Group)
what: remove a group from the system
who: DPO

deleteGroups(Groups)
what: remove a list of groups from the system
who: DPO

getSharing(AclManagedObjects)
what: give the list of access each object of the list have
who: Anybody with Read access to the objects

listACLs(QGroup)
what: give the list of objects the group have
who: Anybody with Read access to the objects

listGroups(QGroup)
what: lists groups matching the query
who: anyone

listGroupUsers(QGroup)
what: lists the users of a group
who: anyone

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

listUserGroups(QUser)
what: lists the groups of a user
who: anyone

listUsers(QUser)
what: lists matching the query
who: DPO

setSharing(Acls)
what: adds access rights to objects
who: DPO, owner of concerned objects or user in group with Manage right.

updatePatientsOwner(OwnerAndPatients)
what: assign a new owner
who: Owner

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

4 Case-based retrieval service
4.1 Text based
The Case-Based Retrieval (CBR) service aims to help physicians to find similar patients based on the clinical reports of a given
patient. In addition, the service proposes a summary of the returned cases of similar patients at different points in time. In the
system, the basic search item is the episode of care.

The CBR is developed by HES-SO. Figure 5 illustrates the global workflow of the CBR. On the HES-SO server, an index is created:
data are extracted from the PCDR and indexed using a local instance of Apache Solr. A MeSH normalization of the clinical
syntheses is locally performed and stored in the indexes. The graphical user interface, together with all dependent services, are
located on the MD-Paedigree Portal. The services communicate with the index to obtain the similar cases list using Json
exchange messages.

Figure 5: Overall workflow of the CBR engine.

Clinical data from the MD-Paedigree project are obtained through the secured PCDR API developed by gnúbila. HES-SO
obtained a GRID certificate delivered by SwiNG (i.e. one of the certificate authorities delivering GRID certificates in Switzerland)
in order to be trusted by the PCDR server. Thus, the global workflow includes a secured synchronization between HES-SO and
the MD-Paedigree portal.

A set of 47,433 episodes of care was extracted, corresponding to 33,674 distinct patients. The following demographic
information is extracted: gender, birth date, date of the episode of care, conclusion content (i.e. clinical synthesis). The data is

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

then directly indexed. In addition, a set of MeSH descriptors is automatically assigned to the clinical syntheses. These
descriptors are also indexed.

In the current version of the CBR, and in order to facilitate the display in the CBR graphical user interface, the following
information is stored in the Solr Index: age of the patient when the episode of care occurred, gender, clinical synthesis and
MeSH descriptors. However, in the final version of the CBR, it is planned that the information will not be stored anymore in the
index but directly fetched from the PCDR at query time.

Regarding the graphical user interface, a full integration of the CBR has been performed (Figure 6). The HES-SO team has been
trained by the Gnùbila team, in order to be able to integrate the current version of the CBR and its future updates. An instance
of the Liferay Portal has been locally installed (version 6.1.2) at HES-SO for sake of development. The current CBR servlet has
been transformed to a portlet. Once ready, the HES-SO team pushed the final version on a web-based Git repository manager
and the Gnùbila team deployed it on the MD-Paedigree portal.

Figure 6: Fully-integrated GUI of the CBR

4.2 Image based
As part of the similar case retrieval it is planned to include also visual retrieval, so visual characteristics that are extracted
directly from the image pixel information. Such content-based image retrieval has shown in the past to well complement the
text-based or structured querying. In year 3 checks were done with the disease areas to select the best possible scenario and
gather sufficient image data for training in at least one of the disease areas. Prototypes were developed on retrieval of images
from the literature by visual means in year 3. In year 4 this will be extended to at least one of the disease areas and evaluation
in combination with the semantic retrieval for a mutlimodal retrieval approach.

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

5 DCV : Data Curation and Validation
An updated version of the web-based Data Curation and Validation (DCV) tool has been released as part of the beta prototype
of the infostructure. The DCV tool, developed by ATHENA, is a web application offering an advanced (semi)-automatic data
cleaning process for MD-Paedigree data. The tool uses a client-server architecture, illustrated by the following figure.

Figure 7: Architecture of the new and updated DCV tool. It is connected with the MD-Paedigree infrostruction via Gnubila’s API

For more information about DCV’s alpha implementation please consult deliverable “D15.2 - DCV curation tools and services to
automatically and manually acquire high-quality curated data”. For the beta release implementation and details on what has
been improved and updated since the previous version, please also consult “D16.2 - Beta Prototype of KDD & Simulation
platform”.

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

6 AITON: Knowledge Discovery (KDD) and Simulation Platform
AITION is the information processing, knowledge discovery (KDD) and simulation platform for Big Data Healthcare, as well as,
the related, well-defined KDD workflow that promotes model-guided personalized medicine. AITION is developed under WP16
and is made up of a number of different modules, as described in detail in deliverable “D16.1 - First report on biomedical
knowledge discovery and simulation for model-guided personalized medicine”. The beta release of the infostructure
incorporates the components described below.

Under task “T16.1 - General data analysis and knowledge discovery tools”, some well-established Machine Learning (ML)
techniques and algorithms have been implemented on top of ATHENA’s EXAREME (ex ADP/madIS) data flow processing
system, following the same architecture used by the DCV tool (T15.1). This way, all platforms and tools developed by ATHENA
will be integrated providing an end-to-end data pre-processing, data analysis and data mining platform with only one point of
integration with the MDP platform.

More specifically, the current version of DCV mainly consists of data preprocessing and cleaning methods. In order to further
extend its functionality and provide a more complete user experience, we have decided to incorporate several well-established
ML algorithms within the same WEB-based data analysis platform, following the same architecture. This way, we are
integrating together in a streamlined fashion all platforms and tools produced by ATHENA RC, providing an end-to-end online,
data cleaning, pre-processing, data analysis and data mining platform, with only one point of integration with the MDP
platform.

Thus, the end-user besides being able to pre-process data (e.g. detecting errors or outliers), will also have the opportunity to
identify groups and similar cases or create models that predict the value of one or more target variables using the same
platform. For this purpose, we have incorporated an open source Python library, scikits.learn (http://scikit-learn.org/stable/)
which contains a number of well-established machine learning algorithms and techniques implemented in Python libraries.
These libraries can be easily imported on top of EXAREME as specific User-Defined Funtions (UDFs) of the madIS system
(EXAREME’s worker). Such UDFs, construct predictive or clustering models, estimate new values for unlabeled data, and
categorize new data samples.

At this point, three general UDFs (operators) have been developed:

● one for creating clustering (unsupervised) models,

● one for training the classification / regression (supervised) models, and

● one for predicting new values for unlabeled data samples.

Furthermore, as will also be described in detail in the forthcoming deliverable “D16.2 – First report on biomedical knowledge
discovery and simulation for model-guided personalized medicine”, we have already incorporated within DCV ten (10) new
algorithms: 4 clustering, 3 supervised, and 3 methods for dimensionality reduction.

A screenshot of the new “KDD section” extending the capabilities of the DCV tool is shown in the following figure. In particular,
the user can now choose among several extra preprocessing techniques like dimensionality reduction for visualization or
feature extraction. The user can also identify similarities among the samples, or construct classification or regression models
via the clustering & supervised sections respectively. All models are serialized and stored in a compressed file. We are also
working to store the model in user's database but most of the time what is better in terms of memory allocation depends on
the model's size. Therefore, each user will have the ability to choose a trained model in order to cluster or classify new
incoming samples.

http://scikit-learn.org/stable/

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

Figure 8: DCV - KDD integration: An extra flow-step (“Knowledge Discovery”) has been added within the DCV tool giving the user the

opportunity to explore new knowledge discovery techniques.

Under task T16.3, the AITION Desk tool (rich GUI application) has been adapted to MD-Paedigree related requirements and a
first level integration (for data retrieval) with the platform has been achieved. In addition, we have re-implemented specific
algorithms for Bayesian Network structure learning initially written in Matlab, following a Service Oriented Architecture that
will give as the opportunity to provide such functionality on top of the MD-Paedigree platform.

Integration of the AITION/DCV tools with the platform: A first level integration (for data retrieval) with the platform has been
achieved. More specifically, at this point we are able to first explore the underlying domain model (data types, model’s
hierarchy) and select specific variables. Then, based on these variables, the related SQL is generated to parse data through the
MD-Paedigree platform API.

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

7 Gnubila Anonymiser
As a consequence of the amount of data that was not following the MD-Paedigree guidelines in term of anonymization and the
lack of such a tool in different centres, gnúbila has decided to provide for free its anonymisation solution.
This anonymization tools is both installed as a standalone at some partners sites and also embedded inside all importers
provided by gnúbila.

7.1 Architecture
The architecture of the Anonymizer is based on the Application Server Tomcat 77 and contains an ETL (Extract Transform Load)
engine provided by Apache Camel8. Apache Camel is an open source Java framework that focuses on making integration easier
and more accessible to developers. It does this by providing:

• concrete implementations of all the widely used Enterprise Integration Patterns (EIPs),
• connectivity to a great variety of transports and APIs,
• easy to use Domain Specific Languages (DSLs) to wire EIPs and transports together.

The FedEHR Anonymizer is generic by design and therefore configurable to respond to the latest and evolving data privacy
regulations. The proposed version of the solution will be widely customizable through the privacy profiles, which data curators
can define based on ethical concerns and applicable regulations.
The FedEHR Anonymizer is able to process different file types like Digital imaging and communications in medicine files (or
DICOM), CSV files (Comma-Separated Values).
The architecture allows the Anonymizer to provide a wide flexibility regarding the protocols for the input/output/quarantine
management (local file, FTP/SFTP, PACS, etc.).
The Anonymizer provides a Web Console, based on Hawtio9, to facilitate the administration of the Camel routes. The Camel
plugin of the FedEHR Anonymizer Web Console allows getting statistics and graphical charts about the anonymization process,
but also more importantly a graphical visualization of your Camel Routes that will help you to customize your routes.

7.2 FedEHR Anonymizer Index Database
The FedEHR Anonymizer Index Database is based on the concept of Master Patient Index (MPI). A Master Patient Index (MPI) is
an electronic medical database. The MPI stores and maintains a unique index (or identifier) with different information about
the patient (patient name, gender, date of birth, etc.), and it can also include data on physicians or other medical staff.
The Master Patient Index ensures that each patient is stored only once within all the system and maintains all the data
consistent.
The FedEHR Anonymizer is able to dump any identifying data extracted during the anonymization process into a Master Patient
Index, called FedEHR Anonymizer Index Database, or Index Database. This MPI, based on MapDB10, is an embedded database
engine.

7.3 Anonymize files
Once started, to invoke the Anonymizer with the local route, you have to paste your original file into the Input directory
(specified during the installation step, see above).
The .camelLock file indicates that your file (Dicom/CSV/...) is being processed by the Anonymizer:

Figure 9: Processing a DICOM

7 Apache Tomcat: https://tomcat.apache.org/index.html
8 Apache Camel: http://camel.apache.org/
9 Hawtio: http://hawt.io/
10 MapDB: http://www.mapdb.org/

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

Once your file is successfully processed, your file is moved into the output directory.
If an error occurred during the anonymization process, the original file is moved into the quarantine folder (configured above).
A report containing the error message and the stacktrace is also created:

Figure 10: Quarantine folder

Figure 11: Quarantine report

7.4 Manage the Camel routes
The FedEHR Anonymizer provides a graphical tool, the FedEHR Anonymizer Web Console to easily manage and customize the
Camel routes.

7.4.1 Access to the graphical Camel environment

• To access the graphical Camel environment, the User must be uncommented and the Administrator Password must
be changed in the TOMCAT_HOME/conf/tomcat-users.xml configuration file.

• Open your favourite Web Browser to the following TOMCAT_ADDRESS/hawtio.
1. Use the login and password that you customized above to log in to the FedEHR Anonymizer Web Console.

Figure 12: FedEHR Web Console: Login page

2. Go to the Camel tab.

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

7.4.2 Visualize and Monitor your routes
The FedEHR Anonymizer Web Console allows you to visualize and monitor your Camel routes. It’s a useful feature to deal with
complex Camel routes.

1. The different routes registered in the Camel Context are listed in the left part of the page (Figure 13).

Figure 13: Registered Routes in the Camel context

2. You can get real time information (Figure 14) about the status of your routes.

Figure 14: Real time information about the Camel routes

3. To graphically visualize your routes (Figure 15), select a route and choose “Route Diagram”

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

Figure 15: Graphical representation of a Camel route

7.4.3 Graphically customize Camel routes
The FedEHR Anonymizer Web Console allows the administrator to modify on the fly the Camel routes (Figure 16). In order to
do this:

1. Select a route on the left side of the interface.
2. Click on Source tab.
3. Process your modification and validate the modification by clicking on Update.

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

Figure 16: Graphical customization of a Camel route

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

8 GPU based processing and computation
8.1 GPU accelerated geometric multigrid method
8.1.1 Introduction
The two most popular algorithms for the solution of the sparse linear systems of equations resulting from the discretization of
partial differential equations are the preconditioned conjugate gradient method (PCG) [Gui et al., 2012] and the multigrid
method (MG) [Briggs et al., 2000], [Trottenberg et al., 2000], in its two variants geometric MG (GMG) and algebraic MG (AMG).
The PCG method is regularly used for solving sparse symmetric positive definite linear systems, it is easy to implement, and
converges in at most n steps to the solution (n is the size of the system) [Ament et al., 2010].
Originally, multigrid methods were developed to solve boundary value problems posed on spatial domains. More recently, the
original multigrid approach has been abstracted to problems in which the grids have been replaced by more general levels of
organization [Briggs et al., 2000]. The multigrid method is based on a hierarchy of discretization levels, whereas the corrections
performed at the coarser discretization levels improve the convergence rate of the solution on the finest discretization level.
The GMG method requires specific information on the hierarchy of discretizations, but, if this information is available, it is
considerably more efficient than the AMG method [Ruge et al., 1987].
Previous researches have demonstrated that the GPU-based implementation of the GMG outperforms its CPU-based
counterpart. Hence, in the current activity we have focused on a more in-depth analysis of the GPU-based GMG algorithm.
Specifically we employed different GMG variants, different discretization schemes for the Poisson equation, varying number of
smoothing steps during restriction and prolongation, we used single and double precision computations, and different
discretization resolutions. Finally, we determined the performance gap between the GMG method and the PCG method on a
state-of-the-art GPU.

8.1.2 Methods and implementation
To study the performance of the GMG method we consider the Poisson equation. To address the aspects mentioned in the
introduction, in the following we specifically refer to the steady-state heat conduction problem and apply a finite difference
method for its discretization in a three-dimensional domain. A uniform mesh of points is used, and, by applying central
differencing, three different discretization schemes are considered, leading to:
a 7-point stencil,
 Ti,j,kn + Ti+1,j,k

n + Ti-1,j,k
n + Ti,j+1,k

n + Ti,j-1,k
n + Ti,j,k+1n + Ti,j,k-1

n -7Ti,j,kn = 0
a 19-point stencil,
Ti,j,k-1
n + Ti-1,j,k-1

n + Ti+1,j,k-1
n + Ti,j-1,k-1

n + Ti,j+1,k-1
n + Ti-1,j,k

n + Ti+1,j,k
n + Ti,j-1,k

n + Ti,j+1,k
n + Ti-1,j-1,k

n +
Ti-1,j+1,k
n + Ti+1,j-1,k

n + Ti+1,j+1,k
n + Ti,j,k+1n + Ti-1,j,k+1

n + Ti+1,j,k+1
n + Ti,j-1,k+1

n + Ti,j+1,k+1
n -19Ti,j,kn = 0

and a 27-point stencil,
Ti,j,k-1
n + Ti-1,j,k-1

n + Ti+1,j,k-1
n + Ti,j-1,k-1

n + Ti,j+1,k-1
n + Ti-1,j-1,k-1

n + Ti-1,j+1,k-1
n + Ti+1,j-1,k-1

n + Ti+1,j+1,k-1
n +

Ti-1,j,k
n + Ti+1,j,k

n + Ti,j-1,k
n + Ti,j+1,k

n + Ti-1,j-1,k
n + Ti-1,j+1,k

n + Ti+1,j-1,k
n + Ti+1,j+1,k

n + Ti,j,k+1n + Ti-1,j,k+1
n +

Ti+1,j,k+1
n + Ti,j-1,k+1

n + Ti,j+1,k+1
n + Ti-1,j-1,k+1

n + Ti-1,j+1,k+1
n + Ti+1,j-1,k+1

n + Ti+1,j+1,k+1
n -27Ti,j,kn = 0.

As described in section 8.1.1, geometric multigrid methods (GMG) refer to a group of algorithms for solving differential
equations using a hierarchy of discretizations (Figure 17). The discretization is applied for different grids, whereas the grids
have successively larger spacing between the nodes. All GMG variants are based on successive transitions from fine to coarse
grids and back. Hence, the basic steps of the GMG method are:
- relaxation (smoothing): a simple iterative method like Jacobi or Gauss-Seidel is used to reduce the high frequency errors

in the solution;
- restriction: the residual determined on a finer grid is downsampled to a coarser grid;
- prolongation: the residual on a finer grid is determined by interpolating the values from the coarser grid.

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

Figure 17: Basic concept of the geometric multigrid method: the solution is iterated through different discretization levels

The relaxation methods employed herein are red-black Gauss-Seidel (RBGS) for the 7-point stencil [Vizitiu et al., 2014], and
Jacobi for the 19-point and 27-point stencils [Chung, 2010]. The red-black Gauss-Seidel method requires one array for storing
the values, but the computations are divided into two sequential steps: grid nodes are marked as being red or black, whereas
all neighbors of a node have the opposite color of the current node. Hence, when updating the values of the red nodes only
values at black nodes are used, and vice-versa. The Jacobi method uses only values from the previous iteration and hence only
one computation step is required at each iteration, but two different arrays are allocated for storing the previous and the
current values at the grid nodes.
The GMG variants considered herein are displayed in Figure 18: V-cycle, W-cycle and full MG (FMG) scheme. Each figure
depicts the strategy for a single iteration (multiple iterations are required to converge to the final solution).
Whereas GMG is based on an explicit solution scheme, the PCG method employs an implicit solution scheme for solving sparse
linear systems of the form.

Figure 18: Geometric Multigrid variants: (a) V-cycle, (b) W-cycle, (c) Full MG (FMG).

The implementation of the V-cycle and W-cycle GMG variants are based on the µ-Cycle algorithm (Algorithm 1), which is a
recursive scheme. The only difference is given by the parameter µ, which dictates how many times a new function will be
launched: for the V-cycle µ = 1, whereas for the W-cycle µ = 2. When it is first launched, the algorithm starts at level 0, and,
every time a new function is launched, a coarser grid is used [Briggs et al., 2000]. The values n1, n2, n3 determine the number
of smoothing steps on the descending branch, at the coarsest level, and respectively on the ascending branch. Additionally to
the prolongation step, on the ascending branch, a correction is employed: the values on the destination level are corrected
based on the interpolated values computed from the source level (a matrix-sum operation is performed).

Algorithm 1 µ-Cycle

µ-Cycle(level)
 if(level is coarsestLevel)

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

 apply n2 smoothing steps
 else
 apply n1 smoothing steps
 compute residual
 restrict to a coarser grid
 µ-Cycle(level+1) µ times
 prolongate
 correct
 apply n3 smoothing steps
 end

The multigrid method requires one storage array for each level (level 0 uses the largest array and occupies most of the
execution time). At the coarsest level (level L) a 3D grid with 3x3x3 nodes is used. We consider Dirichlet boundary conditions,
and, hence, the values on all faces of the domain are known (we set the values on five faces to 0, and one face to a non-zero
value).

8.1.3 Results
To evaluate the performance of the GPU based GMG implementation we used a NVIDIA GeForce GTX Titan Black graphics card,
and the CUDA toolkit version 6.0. The steady-state heat conduction problem was solved on a rectangular domain, and the
Dirichlet boundary conditions, were set to 0⁰C for five facets and to 100⁰C for the remaining facet. The numerical solution was
obtained on a grid of 129x129x129 nodes. Different numbers of smoothing steps were considered at different levels of the
GMG method. Each configuration is described by a three-figure number: the first value determines the smoothing steps while
restricting the grid, the second value determines the smoothing steps at the coarsest level, while the third number determines
the smoothing steps while prolongating. All computations are performed in double precision and use the 7-point stencil when
not otherwise stated, and iterations are performed until the average residual value no longer decreases from one iteration to
the next (a value close to the limit of the corresponding floating point representation limit is reached).
First, we compare the different GMG schemes (V-cycle, W-cycle and FMG) in a 313 configuration with red-black Gauss-Seidel
smoother. Figure 19 displays the dependence between the execution time and the average residual. The V-cycle scheme
performs best: although it requires more iterations than the W and FMG schemes (13 iterations for V, 8 iterations for W, 11
iterations for FMG), the average residual decreases to 1e-14 in the shortest amount of time. Hence, for the following steps we
present results for the V-cycle scheme.

Figure 19: Comparison of different GMG schemes (V, W, FMG) when the RBGS smoother is used

Next, we analyze the effect of the smoothing configuration (for a RBGS smoother). Figure 19 displays the four best performing
configurations: two or three smoothing steps are required during restriction and prolongation, while only one smoothing step

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

is required at the coarsest level. From the four depicted strategies, 212 and 312 perform best: 212 is slightly faster but requires
one more iteration to reach an average residual of 1e-14 (11 vs 10 iterations), leading to approximately the same execution
time.

Figure 20: Effect of smoothing steps on the performance of the GMG method

In the following we analyze the effect of the floating precision on the performance of the GMG method (Figure 21). We
considered single and double precision, in combination with the best performing smoothing configurations (212 and 312). The
average residual in single precision is limited to approx. 1e-5, whereas in double precision it decreases to 1e-14. The residual of
1e-5 is reached slightly faster in single precision since the GTX Titan Black card has a higher GFLOP processing power in single
precision than in double precision.

Figure 21: Effect of floating point precision on the performance of the GMG method

Another important aspect is the effect of the stencil configuration on the performance of the GMG method (Figure 22). We
considered the 7-point stencil with RBGS smoother and the 19-point and 27-point stencil with Jacobi smoother. The 19-point
and 27-point stencils require 40% and respectively 155% more execution time to reach a similar level of accuracy. However,
opposed to the analysis performed for different GMG schemes, different number of smoothing steps, and single/double
floating point precision, we cannot state that one approach performs better than the others. Practically, for each stencil
configuration a different problem is solved: although the analytical equations are the same, the different discretization
schemes lead to different numerical equations.

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

Figure 22: Effect of stencil configuration on GMG performance

Finally, we compare the performance of the best performing GMG variant (V-cycle, 312 smoothing steps) with the optimized
PCG method, in double precision. We considered different fine grid resolutions and the three different discretization schemes.
The results in Table 1 indicate that on the fine grid of 129x129x129 GMG offers a speed-up of 7.1x-9.2x over PCG, while it also
leads to a smaller average residual. The speed-up is smaller on the intermediate grid, while on the coarse grid, PCG performs
slightly better. This is given by the fact that for GMG the parallelism on the coarse grid (33x33x33) is limited, whereas for PCG
the size of matrix A is still large enough to utilize the computational power of the GPU. In practice, typically used grids have
more than 1 million nodes, case in which the GPU based GMG implementation performs better than the GPU based PCG
implementation. While GMG offers these execution time advantages over PCG, it requires information regarding the
underlying PDEs to be solved in order to generate different levels of discretization. On the contrary PCG only requires
information regarding the discretization on the fineste level. Thus, the higher performance of GMG comes at the cost of a
tighter link with the specific mathematical model which has to be solved numerically.

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

Table 1: Execution time and average error comparison for GMG and PCG

Fine grid resolution 129x129x129 65x65x65 33x33x33
Method PCG GMG PCG GMG PCG GMG
RBGS
7p stencil

Avg. Error 5.22e-12 1.44e-14 1.41e-11 1.66e-14 4.21e-11 1.43e-14
Time [ms] 1118 121 124 50 28 33

Jacobi
19p stencil

Avg. Error 5.21e-12 7.00e-14 1.25e-11 6.99e-14 3.89e-11 6.79e-14
Time [ms] 1255 172 127 48 28 32

Jacobi
27p stencil

Avg. Error 4.30e-12 1.49e-13 1.40e-11 1.17e-13 2.94e-11 1.19e-13
Time [ms] 1502 211 145 61 29 35

8.2 GPU accelerated information retrieval using Bloom filters
8.2.1 Introduction
Semantic indexing is a popular technique used to access and organize large amounts of unstructured text data. Semantic
search seeks to improve document retrieval accuracy by understanding searcher intent and the contextual meaning of terms
as they appear in the searchable data space, whether on the web, or within a closed system.
The Bloom filter [Bloom, 1970], conceived by Burton H. Bloom in 1970, is a space-efficient probabilistic data structure (a binary
array) that is used to test whether an element belongs to a set. Bloom Filter based algorithms are part of the major families of
string matching with specific features, that makes them a great candidate for applications such as distributed databases or
cache-membership protocols: in checking whether a data item exists at a specific location, one needs only to receive a small bit
array to be checked locally, without unnecessarily querying the remote database. However, string matching technology now
encounters new challenges because of increasing amounts of data and stringent response time requirements. This is the
reason why improving the underlying implementation of string matching algorithms becomes critical.
Research activities into GPU accelerated string matching for applications in information retrieval discuss the utilization of
programmable pipeline Graphics Processing Units (GPUs) for high speed string matching [Gee, 1987]. The process of mapping
and searching is responsible for a large percentage of the computational load even though it is mathematically and
algorithmically fairly simple. Therefore, increasing the speed of these operations could improve computing performance.
The goal of the current work was to evaluate the viability of using GPUs to speed-up the Bloom filter based string searching
algorithm. Moreover, to increase the information retrieval accuracy, several preprocessing techniques have been considered.

8.2.2 Methods and implementation
The Bloom filter offers a compact probabilistic approach to represent a set that can result in false positives (claiming an
element to be part of the set when it was not actually inserted), and no false negatives (i.e. it never reports an inserted
element to be absent from the set). The probability of false positive results can be controlled.
The basic operations involve adding elements to the set and querying for element membership in the probabilistic set
representation. The accuracy of a Bloom filter depends on the size of the filter, the number of hash functions used in the filter,
and the number of elements added to the set [Broder et al., 2003].
Although the Bloom Filter may report false positive results, the false-positive probability can be controlled (lowered) by
choosing proper filter parameter values.
The two main operations of the Bloom filter, the generation of the filter from a set of words, and the testing operation, can be
parallelized. This inherent parallelism of the algorithm can be exploited on a GPU, which contains several streaming
multiprocessors, each of them containing several cores. In the following we introduce the overall workflow of the CPU-GPU
based hybrid Bloom filter implementation (Figure 23).

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

Figure 23: Workflow of the CPU-GPU version

First, several text files are read, which are subsequently used to generate associated Bloom filters. In the following several
preprocessing techniques are applied. First, the text is tokenized: the stream of text is broken down into words, and spaces and
punctuation marks are removed. Next, a predefined set of stop words [*Stop words, 2009] is removed from the input data.
Finally, stemming is applied in order to reduce inflected or derived words to their word stem, base, or root form.
The threads in the execution configuration for the Bloom filter generation are organized as follows: each thread block
processes one input file, and each thread processes one word. If a text file contains more words than threads, each thread will
process several words. For a precise identification of the input data to be used by each thread of the kernel, aside from the
array containing the text information, two additional arrays are precomputed and transferred to the GPU: an integer array
containing the start index for each word in the char array, and a second integer array containing the start index for each file.
Once the Bloom filter has been generated, it is stored in the global memory, and another kernel is launched which performs
the query operation. The execution configuration is set as follows: each thread block processes one Bloom filter vector, and
each thread tests a query word for its membership.
Next, the query results are copied back to the host memory. Finally, the documents are ranked based on their relevance
relative to the query, and they are displayed to the user. Relevance rankings of documents in a keyword search is calculated
using the assumptions of document similarity theory [Turnley et al., 2010], by comparing the deviation of angles between each
document associated vector and the original query vector, where the query is represented in the same vector space model.
In the following, we focus on the filter generation kernel (Algorithm 1 displays the pseudocode of the map Bloom kernel
function). In the mapping process, when scanning the corpus, each word is hashed against its corresponding Bloom filter
vector stored in global memory by a separate CUDA thread (lines 6 to 9 in Algorithm 2). Because each word is mapped
simultaneously by different threads, this leads to multiple accesses to the same memory buffer. To avoid race conditions,
atomic operations [*NVIDIA, 2015] are used.

Algorithm 2. Parallel Bloom Filters mapping operation
1: Input: words from text files
2: Input: index of each word beginning
3: Input: index of each file beginning
3: Output: Bloom vector for each file
4: for all text files do
5: initialize all-zero bitVector of size m bits
6: for each word in current text file (denoted x) do
7: for each hash function h do
8: bitVector[hashh (x)] = 1

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

 9: end for
10: end for
11: end for

Since global memory operations have a large latency, and some of these operations are performed atomically, we also
consider an optimized implementation, for which shared memory is employed. Instead of performing write operations on the
filter in global memory, each thread block uses a local shared memory array to generate a local filter. This is possible since the
global filter has a preallocated segment for each file. Once all threads of a thread block have finished the processing (a
synchronization barrier is used), the locally generated Bloom filter is copied into the global memory, into the corresponding
segment. Atomic operations are still required, but since they are performed in the shared memory, the latency is significantly
lower.

8.2.3 Results
To evaluate the performance of the different implementation versions of the Bloom filter application, we used an Intel i7 8
core at 3.4 GHz, and a NVIDIA GTX Titan Black graphics card. To test the above-mentioned developments, a publicly available
benchmark dataset consisting of unstructured text files were used, gathered from articles in various scientific domains such as
bioinformatics, molecular physics, astronomy, etc. Experimental tests revealed that the average number of words per article is
of around 330.
To process the text files, the map Bloom kernel generates a number of thread blocks equivalent to the number of mapped files,
whereas each block of threads contains 512 threads. If the number of files is greater than the maximum number of thread
blocks, the data is processed in sequential batches. Similarly, if the number of words in a document is larger than 512, each
thread processes several words.
Next, we focus on the comparison of the CPU and the hybrid CPU-GPU implementation of the Bloom filter application.
Computational results were perfectly identical for both versions. First, we analyze the execution time improvements for the
parts that were ported to the GPU. All execution times reported below are computed as average value over 10 runs.
Table 2 displays the execution times results for the mapping operation, when different number of files are used. Three
different versions were considered: the CPU version, the GPU version which uses only global memory, and the optimized GPU
version which additionally employs shared memory. For the latter two, we additionally display the speed-up. One can observe
that both GPU based implementations significantly outperform the CPU based implementation: execution time decreases by
more than two orders of magnitude (the speed-up stabilizes at around 300x). Secondly, if more than 500 files are used the
optimized GPU based version is roughly three times faster than the baseline GPU version. If the number of files is smaller, the
differences become even larger. This performance gap is given by the latency of the global memory operations.

Table 2:Average execution time and speed-up analysis for the map bloom operation, for varying number of files

Number
of files

CPU exec.
time [ms]

Baseline GPU version Optimized GPU version
Exec. time [ms] Speed-up Exec. time [ms] Speed-up

50 66.9 3.793 0.288 17.638 232.292
100 100.3 4.891 0.476 20.507 210.714
250 263.3 6.041 1.051 43.585 250.523
500 579.3 7.708 1.905 75.156 304.094
750 893.7 9.389 2.773 95.186 322.286
1000 1162.1 11.120 3.681 104.505 315.702
2000 2390 18.144 7.050 131.724 339.007

Next, we analyzed the effect of the number of hash functions on the execution time of the mapping operation (the number of
files is maintained constant at 1000). Since the optimized GPU based version outperforms the baseline implementation, in the
following only this version is considered. The number of hash functions directly influences the false positivity rate, which is also
displayed in Table 3. The results indicate that even when the number of hash functions decreases drastically, the speed-up is
still maintained at a high level (around 200x). This is given by the fact that the hash functions are computed for a single word in
a sequential manner, both on the CPU, and on the GPU.

Table 3: Average execution time and speed-up analysis for the map bloom operation, with varying number of hash functions

Number hash
functions (k)

False-positivity
rate (p)

CPU execution
time [ms]

Optimized GPU
execution time [ms]

Speed up

2 0.2 170.527 0.874 195.060

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

3 0.1 267.936 1.224 218.936
4 0.05 395.727 1.574 251.494
7 0.01 710.218 2.627 270.330
8 0.005 844.164 2.977 283.599

10 0.001 1089.273 3.681 295.938
11 0.0005 1198.200 4.039 296.657

The second kernel focuses on the search operation. Typically, the mapping process is performed offline, while the search is
performed online. Hence, the execution time results are especially critical for the latter operation. Table 4 displays the
execution time and speed-up results obtained for a search request containing 20 words, and for a Bloom filter based on
varying number of files. The speed-up is significant, although not as large as for the mapping operation. Again, a relatively
stable speed-up value, approx. 20x, is reached when over 500 files are used in the search operation.

Table 4: Average execution time and speed-up analysis for the query operation, with varying number of files

Number of
files

CPU execution
time [ms]

GPU execution
time [ms] Speed up

50 0.775 0.157 4.926
100 1.326 0.155 8.556
250 3.655 0.237 15.408
500 6.106 0.341 17.907
750 8.807 0.442 19.908

1000 11.024 0.554 19.897
2000 20.514 0.908 22.603

Next, we kept the number of files constant (at 1000) and varied the number of words in the query. The results are displayed in
Table 5. An almost linear dependence between the speed-up and the number of words can be observed.

Table 5: Average execution time and speed-up analysis for the query operation, with varying number of query words

Number of
query words

CPU execution
time [ms]

GPU execution
time [ms] Speed up

5 3.102 0.480 6.465
10 5.875 0.522 11.244
15 8.731 0.529 16.493
20 11.024 0.554 19.897
25 15.097 0.565 26.716

Finally, we display in Table 6 the execution time of the entire application, consisting of both mapping and querying operations,
in the configuration with 2000 files, 10 hash functions, and 20 words in the search query. One can observe that the reading and
preprocessing of the files takes the majority of the execution time. However, since this step is performed offline, it is not
critical. Next, for the map Bloom operation, for the GPU based workflow two execution times are displayed: one for copying
the input data to the global memory of the GPU, and one for the actual mapping operation. Similarly, for the query operation,
once the search results have been determined, the results are copied back to the CPU for ranking and visualization.

Table 6: Execution time for each operation

Operation CPU execution
time [ms]

GPU execution
time [ms]

Read + preprocess
files 11951.3

mapBloom 2390
8.744 (copy)
7.050 (exec.)

testBloom 32.9
0.908 (exec.)
0.273 (copy)

Compute Ranking 9.6
Total 14383.8 11977.904

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

8.3 GPU–Accelerated Texture Analysis Using Steerable Riesz Wavelets
8.3.1 Introduction
Textured pattern recognition is a key research topic in computer vision. One of the fundamental concepts in this area is the
characterization of the local organization of image scales and directions to identify patterns [Blakemore et al., 1969]. Although
much research has been carried out on this topic [Crick et al., 1980], [Zhang et al., 2007], it has proven difficult to elegantly
exploit the potential of local attributes for classification. Depeursinge et al. proposed an iterative multi–scale and rotation–
covariant texture learning approach using steerable Riesz wavelets [Depeursinge et al., 2014], [Depeursinge et al., 2013]. The
framework allows learning local computational models (or distinctive signatures) of patterns. Subsequently, the models yield
feature vectors that are optimally discriminant for a given problem. Classification accuracies of up to 98.4% were reported on
databases such as Outex1. However, the algorithm requires days of computation for large databases. To improve its
usefulness, the computations have been parallelized on GPUs.

8.3.2 Methods and implementation
Nth–order Riesz wavelets are used here to learn the texture signatures. This starts with the convolution of Riesz filters with
training images in order to obtain Riesz coefficients. Their respective energies are derived and used to create Support Vector
Machine (SVM) models, while following a one–versus–all (OVA) supervised learning strategy [Depeursinge et al., 2014]. Using
the steerability property of Riesz wavelets, they are tuned to achieve local alignment at each pixel. The aligned coefficients
form part of the final feature vector that can be used for texture classification.
Table 7 outlines the algorithm components and their percentage of the total run time. Alignment of signatures is the most
computationally intensive operation of the application. Figure 24 illustrates the workflow for signature alignment. For each
pixel, the computation of the maximum response requires solving a Nth–order trigonometric polynomial [Depeursinge et al.,
2014]. Since the alignment can be performed independently for all pixels, the GPU becomes a well-suited option for greatly
decreasing run time.

Table 7: Percentage of time spent by each major component within cpu based application

Figure 24: Part of the workflow around the pixel–wise local alignment of Riesz coefficients using the Riesz templates, Gamma

We first introduce a baseline GPU based implementation of the texture learning approach where all computations are
performed in double precision. The GPU based implementation (called GPUBase) covers the actual computation of the feature
vector. Since computing the responses takes around 99.28% of the execution time, it represents the main focus of the
parallelization activities. A significant amount of data is required to reside on the GPU (requiring expensive copy operations),
whereas the number of actual computations needed for computing the responses is small. This limits the throughput and we
identify as main approach for performance improvement an increase in compute intensity [Zhong et al., 2014]. To increase
compute intensity the implementation covers also the computation of polynomial roots and the maximum response
extraction, along with a series of other operations that include trigonometric operations applied to the computed roots. The
GPUBase version is divided into two parts: the computation of polynomial roots and the feature vector computation. In the

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

first part, each thread stores all N + 1 coefficients of the associated polynomial, and all real roots are computed. To determine
these roots, we combine Newton’s method that allows us to approximate one root of a polynomial with Horner’s method for
polynomial long division [Gautschi, 1997]. In the second stage, the feature vector is built by regional averaging of the energies.
Each thread updates locations (based on the number of real roots found by the thread) from the feature vector. Next, the local
orientations of each template are optimized to maximize their response, which is carried out by aligning Riesz components
based on the dominant orientation of the signatures [Depeursinge et al., 2014]. For the GPUBase version these steps are
included in the kernel, since no additional data are required.
Since data in the GPUBase version are stored in the global memory, and the performance of the kernel is primarily affected by
the global memory bandwidth, we first address this aspect.
1) Register Usage: We use registers to store data that are otherwise repeatedly loaded: for the GPUBase version this strategy is
applied for the values computed through trigonometric and associated operations. Since several intermediate computations
are performed, by placing the partial results into registers, and merging the repetitive loop structures, a new enhanced
implementation (GPUReg) is obtained (Figure 25). To further reduce global memory access, we introduce another version
(GPURegGlM), in which we store the arc-tangent value for a root in an additional register. First the data are read from the
register and stored into the global memory as it is required in the end, then, for the sine and cosine operations, the data
cached in the register are used.

Figure 25: Simplified kernel code for (a) GPUBase, and (b) GPUReg

2) Shared Memory Usage: Since the storage of the majority of the data in shared memory could lead to exceeding the
maximum amount of available memory when higher Riesz order and/or higher image resolution are employed, the utility of
this type of memory is limited herein. The starting point for the new kernel is the GPUReg version. Only one data set
(describing the weights of the Riesz components based on SVM coefficients) is small enough to not exceed the maximum size
of the shared memory. The drawback of the first strategy, GPUShM, is that we write in the shared memory only if the local
index is less than (N+1). Thus, if N is much lower than the total number of threads within a block only a small number of
threads writes in the shared memory array, leading to divergent branches and hence to serialization. Shared memory can also
be used to store data that cannot be put into registers and are repeatedly accessed by a thread [Vizitiu et al., 2014]. We
observe that in GPUReg there are data (values within arc–tangent array) that are accessed multiple times by each thread.
Because the values are not shared among multiple threads, we change the memory space in which data are stored without any

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

need of synchronization.

8.3.3 Results
We evaluate the different texture learning strategies using a hardware configuration based on an Intel Core i7 3.8 GHz
processor with 64GB of memory and an NVIDIA GeForce GTX TITAN Black GPU, configured with 48KB of shared memory and
16KB of L1 cache, compute capability 3.5 and the CUDA toolkit version 6.0. The overall workflow of the application is
implemented in Matlab, and the parallelizable components are implemented in C++ for the CPU based version, and in CUDA
for the GPU-based versions. We first analyse the execution times for a configuration with a Riesz order of 8 and an image size
of 128 x 128 (the CPU C++ based version, CPUBaseline, was considered alongside the 5 GPU based versions). We chose the
total number of threads to be equal to image width x image height. Regarding the distribution of threads and blocks: while for
most of the versions we adopted a standard number of 1024 threads per block, for the versions that use shared memory the
number of threads is limited by the maximum size of this type of memory. The results are shown in Table 8.

Table 8: Execution times [s] of implementations for a single time step, when riesz order and image size are set to 8 and 128x128
respectively.

All GPU–based versions lead to a significant speed–up compared to the CPU–based version. The best performance is obtained
for GPUReg, leading to a significant reduction of the execution time (98.9%), as compared to CPUBaseline. GPUReg improves
data reuse and reduces global memory accesses by employing additional registers. The GPURegGlM version continues to
reduce global memory load operations by using an additional register and as a result the execution time compared to the
baseline GPUBase is decreased by 26%, but it increases slightly when compared to GPUReg: the larger number of registers
limits the number of blocks of threads that can run simultaneously. Next, shared memory is used in two versions to reduce
latencies and global bandwidth usage: the first version (GPUShMTha) is limited by the shared memory size and therefore
occupancy decreases, while the second implementation (GPUShM) performs slower than the baseline GPUBase version due to
the massive warp serialization requirements.
Next, we determined the computation time of the entire application, when using the best performing GPU based version
GPUReg and the CPU based version CPUBaseline. The results are displayed in Table 9. The computation time decreases from
70.87 hours to 2.39 hours (speed–up of 29.58x). The Riesz order and the image size have a considerable impact on the
execution time, since they affect the level of parallelism. We considered the best performing GPU based implementation and
determined the speed–up of the parallelizable part for: (a) four different Riesz orders (8, 10, 12 and 14) with image size set
constant at 128x128, and (b) four different image sizes (128 x 128, 256 x 256, 512 x 512, 1024 x 1024) with Riesz order N = 8
(Figure 26). When the Riesz order increases from 8 to 14 the speed–up changes from 93x to 148x. Similarly, as the image size
increases to 1024 x 1024, the speed–up increases to 235x. The results indicate that once the image resolution increases
beyond a certain threshold the speed–up curve flattens since the occupation of the GPU decreases substantially (due to the
larger number of registers).

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

Table 9: Execution times [s] of the entire matlab riesz–based texture classification where the parallelized parts implemented in c/c++ and
cuda were integrated

Figure 26: Comparison of speed–up obtained with the best GPU based implementation over the CPU based implementation with different

(a) Riesz orders and (b) image dimensions

8.4 GPU-accelerated model for fast, three-dimensional fluid-structure interaction
computations

8.4.1 Introduction
Fluid-Structure interaction (FSI) consists in simulating the fluid flow in a domain with moving boundaries. The boundary
displacement may be known and directly enforced (one-way FSI) or may be computed from the interaction with a solid model
which uses as input the stresses given by the fluid (two-way FSI). For arterial circulation simulations, the vessel wall is usually
modelled as a viscoelastic material and the displacements are computed using a finite element method (FEM) based solver.
The other approach consists in performing a one-way coupling, whereas the vessel wall displacement is directly extracted from
patient-specific image data and is enforced onto the flow simulation. Similar work has been done in [Lantz et al., 2014] where a
commercially available FEM based solver was used to simulate the blood flow in the human aorta by incorporating patient-
specific wall motion.
Herein, we present an efficient workflow for embedding the wall motion, given as a set of polygonal meshes, into a Lattice-
Boltzmann (LBM) simulation. We use a GPU accelerated LBM implementation for fast computations. We used the proposed
method to perform simulations of the 3D peristaltic flow problem [Shapiro et al., 1969].

8.4.2 Methods and implementation
LBM is based on a discrete representation of the linearized Boltzmann equation on a regular Cartesian grid. The method
consists of two steps, called collision (1) and streaming (2) which are applied at each grid point. The implementation is based
on a multiple relaxation time (MRT) collision operator and a three-dimensional 19-velocity lattice [d’Humieres et al., 2002]. For
more information on LBM we refer the reader to [Yu et al., 2003]. For the one-way FSI approach the wall motion is given as
input data and is not influenced by the flow properties. Herein, the time-varying geometry is given as a set of polygonal
meshes, each describing the wall position at a moment in time. Based on the given time samples, we compute the Discrete
Fourier Transform (DFT) for each node in the mesh. The wall position and velocity can then be determined at any given time by
evaluating the inverse Fourier transform. The motion of the wall is usually both periodic and smooth, hence the Fourier
spectrum of the given time-varying geometry contains a small number of modes. This makes the DFT based approach more

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

convenient than a regular interpolation between the time samples. The DFT is only computed in the pre-processing stage,
whereas during the simulation only the inverse transform is evaluated to reconstruct the geometry at the current time. To
determine the wall velocity at each node, we compute analytically the time derivative of the inverse transform. The mesh is
embedded in the Cartesian grid by computing the signed distance f(x) for each point x in the grid. This step is also exclusively
done in the pre-processing stage. Lattice nodes are labeled as fluid or solid nodes and herein we assume that the distance f(x)
< 0 for fluid nodes, and f(x) > 0 for solid nodes. The size of the grid is given by the spatial resolution dx and the size of the
smallest bounding-box large enough to fit the geometry at any time. Given the signed distance at each grid node, the fluid
region of the domain can be accurately identified. Depending on how complex the geometry is, the fluid region will regularly
occupy only a small portion of the entire domain. To reduce memory requirements, we use a sparse grid implementation
based on an indirect addressing scheme [Nita et al., 2013]. When the geometry is updated, the fluid region of the domain
changes: some fluid nodes become solid nodes and vice versa. To avoid the requirement of regenerating the grid when the
geometry is updated, all nodes that are labeled as fluid nodes for at least one-time step are identified in the pre-processing
stage (all these nodes are considered when generating the sparse grid). As the mesh is changing in time, the grid nodes need to
be updated as well. This process consists in looping over all facets and computing f(x) for each grid node located close to the
current facet. This operation updates the distance function only for a few layers of nodes close to the boundary, while the
other grid nodes are not affected. It is not required to update all grid nodes since the exact distance to the boundary is only
required at the boundary nodes i.e. nodes that have a neighboring node located outside the mesh.
Since updating the geometry is a computationally expensive operation, it is not performed at each time step. The time interval
after which the geometry is updated is chosen so as to have a maximum displacement smaller than 0.5dx. This significantly
improves performance since the time-step of one LBM iteration is much smaller than the time interval for updating the
geometry. Since the wall velocity is described by its Fourier spectrum, it is not straightforward to find the maximum velocity
analytically. Instead we used a numerical approach that computes the value iteratively. When the geometry is updated, the
wall velocity uw is associated to each grid node close to the wall, along with the new signed distance f(x). The wall velocities are
enforced on the fluid boundary nodes during the streaming step.
All computational steps are implemented with CUDA and run on the GPU.

8.4.3 Results
We applied the model to study 3D peristaltic flow: a configuration in which a periodic deformation of the walls generates net
fluid motion. Here, the geometry is given by a spatially periodic cylindrical vessel, where a periodic deformation function is
applied to its walls. The experiment setup was previously described in [Connington et al., 2009]. In Figure 27, we present the
geometry along with the flow vectors. Both the inlet and outlet were periodic boundaries. The fluid motion is given only by the
wall deformation.
Figure 26 displays the results: the simulated flow rates match the known solution closely, with a maximum absolute error of
0.17 mm3/s, and an average absolute error of 0.11 mm3/s. Furthermore, we performed experiments with different values for
the Reynolds number, to observe its effect on the flow regime. The Reynolds number was changed by adapting the wave
speed, while the other parameters were maintained constant.

Figure 27: Peristaltic flow simulation. Comparison between the measured average flow rates and the exact solution

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

In Figure 28, we present the streamline plots of the flow with Re varying between 1 and 100. To observe the closed
streamlines, the flow is viewed in a frame of reference moving at half of the wave speed. The two counter-rotating vortices
decrease in size as the Reynolds number increases. Furthermore, the pumping efficiency was found to decrease. When
compared to the analytically computed flow rate, the measured flow rate was 13% and 35% smaller for Re = 10 and Re = 100
respectively. The closed streamlines were previously reported in [Connington et al., 2009] but under different circumstances,
characterized by high amplitude ratio, where the fluid is trapped inside the bolus and is moving along with the wave. The
simulations were run on a commercially available graphical processing unit (GeForce GTX TITAN Black) with a spatial resolution
of dx = 0.15mm and a time step of dt = 57ms. The average execution time was of around one hour for one simulation, which
consisted of five wave periods. Roughly 50% of the total execution time accounts for the geometry update process.

Figure 28: Peristaltic flow streamlines for different Reynolds numbers when the reference frame is moving at half of the wave speed

8.5 GPU-accelerated voxelizer
8.5.1 Introduction
Performing a Fluid-Structure interaction (FSI) using the Lattice-Boltzmann method (LBM) requires the moving geometry to be
embedded into a Cartesian grid of uniformly distributed points using a signed distance field 𝜙𝜙(𝐱𝐱). However, the geometry is
typically given as a sequence of non-uniform polygonal meshes. A surface voxelization operation is required to compute the
distance field. The main challenge of voxelization consists in associating each vertex 𝐯𝐯𝑖𝑖 of a polygonal mesh to each node 𝐱𝐱𝑖𝑖 of
the Cartesian grid. Typically, the size of the grid is between 500,000 and 50,000,000 nodes while the size of the mesh is
between 50,000 and 300,000. This makes the voxelization a computationally expensive operation.
For the FSI computations, since the surface is moving, the voxelization operation is required at each solver iteration to update
the position of the surface. With the classical method (CPU based implementation), the surface voxelization operation is the
performance bottleneck as it occupies around 50% of the total computation time [Nita et al., 2015]. Therefore, it is crucial that
an efficient implementation is developed.

8.5.2 Methods and implementation
8.5.2.1 The classical method
The Cartesian grid is defined from a three-dimensional image by its dimensions (𝑁𝑁𝑥𝑥,𝑁𝑁𝑦𝑦 ,𝑁𝑁𝑧𝑧), an origin 𝐨𝐨 and a grid spacing 𝛿𝛿𝛿𝛿
(the grid nodes are uniformly distributed hence 𝛿𝛿𝛿𝛿 = 𝛿𝛿𝛿𝛿 = 𝛿𝛿𝛿𝛿). The grid size is chosen to satisfy the flow solver stability
constraints. The origin 𝐨𝐨 and the grid spacing 𝛿𝛿𝛿𝛿 is used to transform from physical coordinates to grid coordinates (and vice
versa) i.e. to find the voxel (𝑖𝑖, 𝑗𝑗, 𝑘𝑘) that corresponds to a point 𝐩𝐩 = (𝑝𝑝𝑥𝑥 , 𝑝𝑝𝑦𝑦 , 𝑝𝑝𝑧𝑧). The transformation is defined as follows:

𝑖𝑖 = �𝑝𝑝𝑥𝑥
𝛿𝛿𝑥𝑥
− 𝑜𝑜𝑥𝑥�, 𝑗𝑗 = �𝑝𝑝𝑦𝑦

𝛿𝛿𝑥𝑥
− 𝑜𝑜𝑦𝑦� , 𝑗𝑗 = �𝑝𝑝𝑧𝑧

𝛿𝛿𝑥𝑥
− 𝑜𝑜𝑧𝑧�, (1)

Where ⌊𝛿𝛿⌋denotes the floor function. And the inverse transformation:
𝑝𝑝𝑥𝑥 = 𝑖𝑖𝛿𝛿𝛿𝛿 + 𝑜𝑜𝑥𝑥, 𝑝𝑝𝑦𝑦 = 𝑗𝑗𝛿𝛿𝛿𝛿 + 𝑜𝑜𝑦𝑦, 𝑝𝑝𝑧𝑧 = 𝑘𝑘𝛿𝛿𝛿𝛿 + 𝑜𝑜𝑧𝑧 , (2)
A mesh is defined as a set of triangles 𝑇𝑇 = (𝐯𝐯1, 𝐯𝐯2, 𝐯𝐯3), for each triange we compute an axis-aligned bounding-box (AABB) as
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝐯𝐯𝑚𝑚𝑖𝑖𝑚𝑚 , 𝐯𝐯𝑚𝑚𝑚𝑚𝑥𝑥) so that the triangle will completely fit inside it, furthermore the AABB is enlarged in all directions using a
small value (2 − 3δx) so that the triangle vertices will never be located exactly on the AABB wall.
The classic method for surface voxelization consists in simply looping over each grid node 𝐱𝐱𝑖𝑖 in each AABB and computing the
signed distance 𝜙𝜙(𝐱𝐱𝑖𝑖). To find all the grid nodes inside the AABB, one needs to transform (𝐯𝐯𝑚𝑚𝑖𝑖𝑚𝑚 , 𝐯𝐯𝑚𝑚𝑚𝑚𝑥𝑥) to grid coordinates to
get (𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚 , 𝑗𝑗𝑚𝑚𝑖𝑖𝑚𝑚 , 𝑘𝑘𝑚𝑚𝑖𝑖𝑚𝑚) and (𝑖𝑖𝑚𝑚𝑚𝑚𝑥𝑥 , 𝑗𝑗𝑚𝑚𝑚𝑚𝑥𝑥 , 𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥) and then loop over all 𝑖𝑖, 𝑗𝑗 and 𝑘𝑘 values located inside the bounds.
The signed distance function is defined as follows:
𝜙𝜙(𝐱𝐱) = 𝑑𝑑(𝐱𝐱, 𝐱𝐱⊥)𝑠𝑠𝑠𝑠𝑠𝑠[(𝐱𝐱 − 𝐱𝐱⊥) ⋅ 𝐧𝐧], (3)

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

Where 𝐧𝐧 is the triangle normal and 𝐱𝐱⊥ is the closest point to 𝐱𝐱 on the triangle. The second factor in the above expression
represents the sign, i.e. it will be negative or positive depending on which side of the triangle, the point 𝐱𝐱 is located. For
adjacent triangles the AABBs will intersect and will result in multiple 𝜙𝜙 values for the same grid point 𝐱𝐱, one value for each
AABB that point 𝐱𝐱 is included in (Figure 29). In this case the absolute minimum value of 𝜙𝜙 will be chosen.
For the GPU implementation, the loop that processes the mesh triangles is parallelized so that one GPU thread will process one
triangle. However there are several downsides that causes very poor GPU utilization in this case. The main problem arises at
the adjacent triangles where the AABBs intersect. In the intersection regions, there will be multiple threads that need to
update the 𝜙𝜙 value at the same grid node 𝐱𝐱. In this case a synchronization operation is required to ensure that only one thread
will update one location at the same time. The synchronization operation drastically reduces parallelism and GPU
performance.
The other limitation is given by the fact that each GPU thread will process a different number of grid nodes because of the
different AABB sizes. More specifically, the number of the grid nodes in an AABB is influenced by the size and orientation of the
corresponding triangle. To achieve maximum performance with a GPU based implementation, all the threads should execute
the same operations.

Figure 29: Two-dimensional analogy of the surface voxelization algorithm. The classic approach (up): ϕ is computed for all the nodes
inside an AABB. And the separating planes technique (down): nodes that correspond exclusively to a facet are identified using sepa

8.5.2.2 The separating plane technique
The classical method can be improved by redefining the way grid nodes are associated with mesh triangles. Instead of
computing the 𝜙𝜙 value for all the nodes in an AABB it is possible to identify a priori the nodes for which each mesh triangle will
give the minimum 𝜙𝜙. Hence, there will no longer be threads that will need to update 𝜙𝜙 at the same location 𝐱𝐱. This method
was initially presented in [Janßen et al., 2014].
For each triangle we define a region so that each point 𝐱𝐱 in that region has the closest point 𝐱𝐱⊥ located on that triangle. To
define such a region for a triangle, three planes are required, one for each edge. More specifically, if a node is located on the
negative side of all three planes then that node is considered to belong exclusively to that triangle.
We check if a point 𝐱𝐱 is located in a triangle region in the following way (Figure 30):
1. For each vertex 𝐯𝐯𝑖𝑖 on the mesh, the vertex normal is computed as an angle weighted average of the normals of adjacent

triangles:
𝐧𝐧Σ = ∑𝛼𝛼𝑖𝑖𝐧𝐧𝑖𝑖

|∑𝛼𝛼𝑖𝑖𝐧𝐧𝑖𝑖|
 (4)

2. For each edge �𝐯𝐯𝑖𝑖 , 𝐯𝐯𝑗𝑗�, with the associated vertex normals �𝐧𝐧𝑖𝑖 ,𝐧𝐧𝑗𝑗� a separating plane is defined:
𝐧𝐧𝑠𝑠 ⋅ (𝐱𝐱 − 𝐯𝐯𝑖𝑖) = 0 (5)
Where 𝐧𝐧𝑠𝑠 is the separating plane normal and is computed as an edge bi-normal:
𝐧𝐧𝑠𝑠 = 1

2
��𝐯𝐯𝑗𝑗 − 𝐯𝐯𝑖𝑖� × �𝐧𝐧𝑖𝑖 + 𝐧𝐧𝑗𝑗��. (6)

𝐧𝐧2

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

3. A point 𝐱𝐱 is considered to be located inside a region of a triangle 𝑇𝑇 = (𝐯𝐯1, 𝐯𝐯2, 𝐯𝐯3) if it is located on the negative side of all

three separating planes:

�
𝐧𝐧𝑠𝑠1 ⋅ (𝐱𝐱 − 𝐯𝐯1) ≤ 0
𝐧𝐧𝑠𝑠2 ⋅ (𝐱𝐱 − 𝐯𝐯2) ≤ 0
𝐧𝐧𝑠𝑠3 ⋅ (𝐱𝐱 − 𝐯𝐯3) ≤ 0

. (7)

For any two adjacent, non-intersecting triangles, the regions defined by (7) will not intersect. If each GPU thread
processes the nodes in separated regions then there will never be any concurrency hence the synchronization is no longer
required. This drastically improves the GPU parallelism and performance.

Figure 30: Defining a vertex normal as an angle weighted average of the normals from adjacent triangles

Fig. 1.5.2..

8.5.3 Results
To test our implementation we considered a known CFD benchmark case consisting of a large brain aneurysm [Steinman et al.,
2013]. Figure 31 displays the mesh along with the voxelized surface.

Figure 31: Test case: a large brain aneurysm mesh of 318,000 triangular elements (up) and the voxelized surface (down)

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

The mesh contains 318,000 triangular elements and the size of the grid in which the surface is embedded is 171x180x142. We
performed the computations for this case using the CPU and GPU implementations for both the classic and the separating
planes method. The hardware we used consists of an Intel i7 (8-cores) CPU and a GTX Titan Black GPU.
The execution times were:
- for the classic method on the CPU the execution time was 23.5 seconds and on the GPU it was 234 milliseconds which

gives a speedup of around 100 times. The GPU execution time does not contain the CPU-GPU memory copy as in an FSI
simulation the memory copy should only be done once in the pre-processing stage.

- for the separating planes method, the GPU execution time was 21.4 milliseconds. Compared to the current
implementation that we use for FSI computations, the new GPU-accelerated one is around 1000 times faster. Using this
approach, the performance of the FSI computations can be taken to an unprecedented level.

8.6 Publications
The methods, algorithms and implementations described above have lead to the publication of the following papers:

1. Vizitiu, A., Itu, L., Joyseeree, R., Depeursinge, A., Muller, H., Suciu, C. “GPU–Accelerated Texture Analysis Using
Steerable Riesz Wavelets”, 24th Euromirco International Conference on Parallel, Distributed, and Network-Based
Processing, Heraklion Crete, Greece, 2016.

2. Iacob, A., Itu, L., Sasu, L., Moldoveanu, F., Suciu, C. “GPU Accelerated Information Retrieval using Bloom Filters”, 19th
Inter. Conf. on System Theory, Control and Computing - ICSTCC 2014, Sinaia, Romania, October 14-16, 2015, pp. 872-
876.

3. Stroia, I., Itu, L., Niţă, C, Lazăr, L., Suciu, C. “GPU Accelerated Geometric Multigrid Method: Performance Comparison
on Different Architectures”, 19th Inter. Conf. on System Theory, Control and Computing - ICSTCC 2014, Sinaia,
Romania, October 14-16, 2015, pp. 175-179.

4. Stroia, I., Itu, L., Niţă, C, Lazăr, L., Suciu, C. GPU Accelerated Geometric Multigrid Method: Comparison with
Preconditioned Conjugate Gradient, 19th IEEE High Performance Extreme Computing Conference, Waltham, MA, USA,
Sept. 15-17, 2015, pp. 1-6.

5. Nita, C., Itu, L. M., Mihalef, V., Sharma, P., Rapaka, S., GPU-accelerated model for fast, three-dimensional fluid-
structure interaction computations, Proc. of the 37th Annual Inter. Conf. of the IEEE Engineering in Medicine &
Biology Society - EMBC 2015, Milano, August 25-29, 2015, pp. 965-968.

8.7 References
[Ament et al., 2010] M. Ament, G. Knittel, D. Weiskopf, and W. Strasser, “A parallel preconditioned conjugate gradient solver for the poisson problem on a
multi-gpu platform,” in Parallel, Distributed and Network-Based Processing (PDP), 2010 18th Euromicro International Conference on, pp. 583-592, IEEE, 2010.
[Blakemore et al., 1969] C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation
and size of retinal images,” Journal of Physiology, vol. 203, no. 1, pp. 237–260, 1969.
[Bloom, 1970] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.
[Briggs et al., 2000] W. L. Briggs, S. F. McCormick, et al., A multigrid tutorial. Siam, 2000.
[Broder et al., 2003] A. Broder, M. Mitzenmacher, “Network Applications of Bloom Filters: A Survey”, Internet Math., vol. 1, no 4, pp. 485-509, 2003.
[Chung, 2010] T. Chung, Computational fluid dynamics. Cambridge university press, 2010.
[Connington et al., 2009] Kevin Connington, Qinjun Kang, Hari Viswanathan, Amr Abdel- Fattah, and Shiyi Chen, “Peristaltic particle transport using the lattice
boltzmann method,” Physics of Fluids (1994-present), vol. 21, no. 5, pp. 053301, 2009.
[Crick et al., 1980] F. H. C. Crick, D. C. Marr, and T. Poggio, “An information processing approach to understanding the visual cortex,” tech. rep., Massachusetts
Institute of Technology, 1980.
[d’Humieres et al., 2002] Dominique d’Humieres, “Multiple–relaxation–time lattice boltzmann models in three dimensions,” Philosophical Transactions of the
Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 360, no. 1792, pp. 437–451, 2002.
[Depeursinge et al., 2013] A. Depeursinge, A. Foncubierta-Rodriguez, H. Muller, and D. V. D. Ville, “Rotation–covariant visual concept detection using steerable
riesz wavelets and bags of visual words,” in SPIE Wavelets and Sparsity XV, vol. 8858, 2013.
[Depeursinge et al., 2014] A. Depeursinge, A. Foncubierta-Rodriguez, D. V. D. Ville, and H. Muller, “Rotation–covariant texture learning using steerable riesz
wavelets,” IEEE Transactions on Image Processing, vol. 23, no. 2, pp. 898–908, 2014.
[Gautschi,1997] W. Gautschi, Numerical analysis. Springer, 1997.
[Gee, 1987] A. Gee, “Research into GPU accelerated pattern matching for applications in computer security”, Univ. of Canterbury, Christchurch, New Zealand,
1987.
[Gui et al., 2012] Y. Gui and G. Zhang, “An improved implementation of preconditioned conjugate gradient method on gpu,” Journal of software, vol. 7, no. 12,
pp. 2695-2702, 2012.
[Janßen et al., 2014] C. F. Janßen, N. Koliha, and T. Rung. A fast and rigorously parallel surface voxelization technique for GPGPU-accelerated CFD simulations.
Communications in Computational Physics (accepted for publication), 2014.
[Lantz et al., 2014] Jonas Lantz, Petter Dyverfeldt, and Tino Ebbers, “Improving blood flow simulations by incorporating measured subject-specific wall
motion,” Cardiovascular engineering and technology, vol. 5, no. 3, pp. 261–269, 2014.
[Nita et al., 2013] Cosmin Nita, Lucian Mihai Itu, and Constantin Suciu, “Gpu accelerated blood flow computation using the lattice boltzmann method,” in High
Performance Extreme Computing Conference (HPEC), 2013 IEEE. IEEE, 2013, pp. 1–6.

D14.3.Beta Version Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

[Nita et al., 2015] Nita, Cosmin, et al. "GPU-accelerated model for fast, three-dimensional fluid-structure interaction computations." Engineering in Medicine
and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE. IEEE, 2015.
[Ruge et al., 1987] J. Ruge and K. Stüben, “Algebraic multigrid,” Multigrid methods, vol. 3, pp. 73-130, 1987.
[Shapiro et al., 1969] Ascher H Shapiro, Michel Y Jaffrin, and Steven L Weinberg, “Peristaltic pumping with long wavelengths at low reynolds number,” Journal
of Fluid Mechanics, vol. 37, no. 04, pp. 799–825, 1969.
[Steinman et al., 2013] Steinman, David A., et al. "Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME
2012 Summer Bioengineering Conference CFD Challenge." Journal of biomechanical engineering 135.2 (2013): 021016.
[Trottenberg et al., 2000] U. Trottenberg, C. W. Oosterlee, and A. Schuller, Multigrid. Academic press, 2000.
[Turnley et al., 2010] P. D. Turnley, P. Pantel, “From Frequency to Meaning: Vector Space Models of Semantics”, Journal of artificial intelligence research, vol.
37, pp. 141–188, January 2010.
[Vizitiu et al., 2014] A. Vizitiu, L. M. Itu, C. Nita, C. Suciu, “Optimized Three-Dimensional Stencil Computation on Fermi and Kepler GPUs”, 18th IEEE High
Performance Extreme Computing Conference, Waltham, MA, USA, Sept. 9-11, 2014, 978-1-4799-6232-7
[Yu et al., 2003] Dazhi Yu, Renwei Mei, Li-Shi Luo, and Wei Shyy, “Viscous flow computations with the method of lattice boltzmann equation,” Progress in
Aerospace Sciences, vol. 39, no. 5, pp. 329–367, 2003.
[Zhang et al., 2007] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, “Local features and kernels for classification of texture and object categories: A
comprehensive study,” International Journal of Computer Vision, vol. 73, no. 2, pp. 213–238, 2007.
[Zhong et al., 2014] J. Zhong and B. He, “Kernelet: High-throughput gpu kernel executions with dynamic slicing and scheduling,” IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 6, pp. 1522–1523, 2014.
[*NVIDIA, 2015] NVIDIA Corporation. “CUDA, Compute Unified Device Architecture Programming guide v7”, 2015.
[*Stop words, 2009] “List of English Stop Words”, 2009. [Online]. Available: http://xpo6.com/list-of-english-stop-words/

9 Conclusion
The Infostructure is currently in Beta version. Almost all the functionalities are in place and the last sprint will mainly concern
tests and fixes of all these applications, as well as finalising the integration between them. This makes the infostruture status
to “corresponding to the planning” despite the issues encountered during the whole project that could have slowed down the
advancement. On a hardware standpoint, the current installation can provide all the validation and the addition of the last
nodes will provide a ready to use base for the following.

	1 Project summary
	2 Executive summary
	3 FedEHR a Clinical Data Repository (CDR)
	3.1 Hardware Architecture
	3.1.1 Current installed node
	3.1.2 Planned node

	3.2 Patient Centric model
	3.3 FedEHR Data Distribution & Access Strategies
	3.4 FedEHR Data access rights management
	3.4.1 Model
	3.4.2 Behaviour
	3.4.3 Java/WebService API
	3.4.3.1 Objects
	3.4.3.2 Implemented API

	4 Case-based retrieval service
	4.1 Text based
	4.2 Image based

	5 DCV : Data Curation and Validation
	6 AITON: Knowledge Discovery (KDD) and Simulation Platform
	7 Gnubila Anonymiser
	7.1 Architecture
	7.2 FedEHR Anonymizer Index Database
	7.3 Anonymize files
	7.4 Manage the Camel routes
	7.4.1 Access to the graphical Camel environment
	7.4.2 Visualize and Monitor your routes
	7.4.3 Graphically customize Camel routes

	8 GPU based processing and computation
	8.1 GPU accelerated geometric multigrid method
	8.1.1 Introduction
	8.1.2 Methods and implementation
	8.1.3 Results

	8.2 GPU accelerated information retrieval using Bloom filters
	8.2.1 Introduction
	8.2.2 Methods and implementation
	8.2.3 Results

	8.3 GPU–Accelerated Texture Analysis Using Steerable Riesz Wavelets
	8.3.1 Introduction
	8.3.2 Methods and implementation
	8.3.3 Results

	8.4 GPU-accelerated model for fast, three-dimensional fluid-structure interaction computations
	8.4.1 Introduction
	8.4.2 Methods and implementation
	8.4.3 Results

	8.5 GPU-accelerated voxelizer
	8.5.1 Introduction
	8.5.2 Methods and implementation
	8.5.2.1 The classical method
	8.5.2.2 The separating plane technique

	8.5.3 Results

	8.6 Publications
	8.7 References

	9 Conclusion

