
D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

1

Model Driven Paediatric European Digital Repository

Call identifier: FP7-ICT-2011-9 - Grant agreement no: 600932

Thematic Priority: ICT - ICT-2011.5.2: Virtual Physiological Human

Deliverable 14.2

Alfa version Infrastructure Deployment Report

Due date of delivery: 28-02-2015

Actual submission date: 06-03-2015

Start of the project: 01-03-2013

Ending Date: 28-02-2017

Partner responsible for this deliverable: maat-G

Version: 1.0

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

2

Dissemination Level: Public

Document Classification

Title Alfa version Infrastructure Deployment Report

Deliverable 14.2

Reporting Period 2

Authors Sebastien Gaspard

Work Package 14

Security PU

Nature R

Keyword(s) Alfa version Infrastructure Deployment Report

Document History

Name Remark Version Date

Deliverable 14.2 0.1 18/02/2015

Deliverable 14.2 0.2 03/03/2015

Deliverable 14.2 0.3 04/03/2015

Deliverable 14.2 1.0 05/03/2015

List of Contributors

Name Affiliation

Sebastien Gaspard maat-G

Lucian Itu UTVB

Jérome Revillard maat-G

David Manset maat-G

List of reviewers

Name Affiliation

Eleni Zacharia ATHENA

Harry Dimitropoulos ATHENA

Bruno Dallapiccola OPBG

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

3

Abbreviations

CRO Contract Research Organization

DCV Data Curation and Validation

DPS Data Publication Suite

eCRF Electronic Case Report Form

ICD International Classification of Diseases

PCDR Paediatric Cardiac Digital Repository

SNOMED Systematized Nomenclature of Medicine

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SOKU Service Oriented Knowledge Utility

VPH Virtual Physiological Human

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

4

TABLE	OF	CONTENTS	
1 Project summary .. 7

2 Executive summary .. 7

3 Introduction .. 8

4 Inherited PCDR infrastructure as a CRO .. 10

4.1 Advantages ... 10

4.2 Drawbacks .. 10

4.3 Conclusion .. 10

5 Hardware Architecture ... 11

5.1 Node Architecture (Rome and Taormina) ... 11

5.1.1 Current installed node connectivity schema .. 11

5.1.2 Node composition ... 11

5.1.3 Node physical installations ... 12

5.2 Portal and Central Servers ... 12

5.2.1 AMGA central .. 12

5.2.2 Portal ... 12

5.2.3 Query dedicated node .. 12

5.3 Target hardware deployment .. 13

5.3.1 Optimal implementation... 13

5.3.2 Probable implementation ... 13

5.4 Load capacity ... 14

5.4.1 Storage .. 14

5.4.2 Power .. 14

5.4.3 Other considerations .. 14

6 FedEHR: Storage infrastructure .. 15

6.1 Patient centric data structure .. 15

6.2 FedEHR Cloud services ... 15

6.2.1 Desktop Fusion and Terminal Service ... 16

6.2.2 Pandora Amga Node Configuration .. 16

6.2.3 Pandora Pipeline Service... 16

6.2.4 Pandora Gateway Saga Service ... 16

6.2.5 Pandora tomcat6 configuration .. 16

6.2.6 Pandora Gateway utilities: .. 16

6.2.7 Persistency Service .. 16

6.3 Big Data Federation Service ... 16

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

5

6.3.1 OPBG Importer .. 16

6.3.2 DPS generic Importer .. 17

6.3.3 Dicom Importer from exported pre-anonymised data ... 18

6.3.4 Patient and Cohort Browser ... 20

6.4 FedEHR Analytics.. 21

6.4.1 Query System .. 21

6.4.2 FedEHR Similarity Search .. 22

6.5 Packages Version ... 23

6.5.1 Gateways ... 23

6.5.2 Portal ... 23

7 eCRF .. 23

8 DCV : Data Curation and Validation .. 25

9 AITON: Statistical Models ... 26

10 Case-based retrieval .. 26

11 GPU based processing and computation ... 27

11.1 Optimized computation of stencil based algorithms .. 27

11.1.1 Introduction .. 27

11.1.2 Methods and implementation .. 27

11.1.3 Results ... 28

11.2 Single-GPU solution of very large systems of linear equations using the preconditioned conjugate

gradient method .. 29

11.2.1 Introduction .. 29

11.2.2 Methods and implementation .. 30

11.2.3 Results ... 30

11.3 Multi-GPU solution of very large systems of linear equations using the preconditioned conjugate

gradient method .. 31

11.3.1 Multi-node multi-GPU based implementation of the preconditioned conjugate gradient 31

11.3.2 Single-node multi-GPU based implementation of the preconditioned conjugate gradient 32

11.4 Random forest based classification ... 32

11.4.1 Introduction .. 32

11.4.2 Methods and implementation .. 33

11.4.3 Results ... 34

11.5 Non-invasive assessment of aortic coarctation ... 35

11.5.1 Introduction .. 35

11.5.2 Methods and implementation .. 35

11.5.3 Results ... 36

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

6

12 MD-Paedigree Cloud Integration .. 38

12.1 Introduction ... 38

12.1.1 Infrastructure as a Service (IaaS) .. 38

12.1.2 Platform as a Service (PaaS) ... 38

12.1.3 Software as a Service (SaaS) ... 39

12.2 MD-Paedigree into the Cloud .. 39

12.3 Virtual Machine provisioning ... 39

12.3.1 SlipStream ... 40

12.4 Virtual Machines configuration ... 41

12.4.1 Concepts - systems administrators needs help! ... 41

12.4.2 Configuration Management to the rescue ... 41

12.4.3 Testing... 47

12.4.4 Conclusion... 47

13 Self-assessment Criteria ... 48

13.1.1 Self-assessment estimation .. 48

13.1.2 Corrective action ... 50

14 Conclusion ... 50

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

7

1 Project	summary	

MD-Paedigree is a clinically-led VPH project that addresses both the first and the second actions of part B of

Objective ICT-2011.5.2:

1. it enhances existing disease models stemming from former EC-funded research (Health-e-Child and Sim-

e-Child) and from industry and academia, by developing robust and reusable multi-scale models for more

predictive, individualised, effective and safer healthcare in several disease areas;

2. it builds on the eHealth platform already developed for Health-e-Child and Sim-e-Child to establish a

worldwide advanced paediatric digital repository.

Integrating the point of care through state-of-the-art and fast response interfaces, MD-Paedigree services a

broad range of off-the-shelf models and simulations to support physicians and clinical researchers in their

daily work. MD-Paedigree vertically integrates data, information and knowledge of incoming patients, in

participating hospitals from across Europe and the USA, and provides innovative tools to define new

workflows of models towards personalised predictive medicine. Conceived of as a part of the “VPH

Infostructure” described in the ARGOS, MD-Paedigree encompasses a set of services for storage, sharing,

similarity search, outcome analysis, risk stratification, and personalised decision support in paediatrics

within its innovative model-driven data and workflow-based digital repository. As a specific implementation

of the VPH-Share project, MD-Paedigree fully interoperates with it. It has the ambition to be the dominant

tool within its purview. MD-Paedigree integrates methodological approaches from the targeted specialties

and consequently analyses biomedical data derived from a multiplicity of heterogeneous sources (from

clinical, genetic and metagenomic analysis, to MRI and US image analytics, to haemodynamic, to real-time

processing of musculoskeletal parameters and fibres biomechanical data, and others), as well as specialised

biomechanical and imaging VPH simulation models.

2 Executive	summary	

As an update of D14.1, this document will reuse elements from this former report. In order to be self-

consistent elements from D14.1 that have not changed will remain as is.

This document will present the current progress in installation of the MD-Paedigree Infostructure Solution.

After placing the project in context, it will present the general view of the current installation. Following

this overview, two sections will explain in detail the installation and needs in term of software and

hardware, adding information about what is currently installed and recommendations about the target

architecture. Then different global topologies for the logical solution will be presented together with the

advantages and drawbacks of each choice. Finally, this document will deal with the degree by which the

user requirements are satisfied and quickly explain how the Infostructure solution responds to these needs.

 	

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

8

3 Introduction	

MD-Paedigree validates and brings to maturity patient-specific computer-based predictive models of

various paediatric diseases, thus increasing their potential acceptance in the clinical and biomedical

research environment by making them readily available not only in the form of sustainable models and

simulations, but also as newly-defined workflows for personalised predictive medicine at the point of care.

These tools can be accessed and used through an innovative model-driven infostructure powered by an

established digital repository solution able to integrate multimodal health data, entirely focused on

paediatrics and conceived of as a specific implementation of the VPH-Share2 project, planned to be fully

interoperable with it and cooperating, through it, also with p-Medicine.

In MD-Paedigree, the VPH Infostructure is designed to accommodate the chosen paediatric clinical areas,

starting from the considerable experience capitalized in the Health-e-Child and Sim-e-Child projects. The

latter developed grid and cloud-based eHealth repositories, models and simulations for specific diseases,

and, particularly building on top of current developments within OPBG (Ospedale Pediatrico Bambino

Gesù), further eHealth tools for data management and distributed high-performance computing which aim

at gradually transferring into clinical practice the most advanced modelling in paediatric cardiology to

support more precise outcomes analysis of pathologies and develop optimal therapies.

MD-Paedigree aims at achieving high-level semantic interoperability, thus requiring standards enabling the

clinical contents to be interpreted consistently across the different EHR regimes, while complete clinical

interoperability between systems will require widespread and dependable access to maintained collections

of coherent and quality-assured semantic resources, including models that provide clinical context, mapped

to interoperability standards for EHR and PHR and biomedical data, linked to well specified terminology

value sets, derived from high quality ontologies.

In order to achieve semantic support at this level, MD-Paedigree takes advantage of recent work achieved

in other EC semantic health and Ontology Based Data Access (OBDA) related projects such as

SemanticHealthNet and DebugIT. MD-Paedigree also intends to comply with terminological and data

interchange standards currently being developed within epSOS, in particular for the Patient Summary. As

for biological data, MD-Paedigree will rely on OBO Foundry resources and BioDBcore recommendations. In

addition, it aims to relate research, publications, experiments, and data joining forces with other EC – open

access related – projects like OpenAIRE, OpenAIREplus and OpenAIRE2020.

• integrate and share highly heterogeneous biomedical information, data and knowledge, using best

practices from the biomedical semantic Web,

• develop holistic search strategies to seamlessly navigate through and manage the integrative

model-driven infostructure and digital repository,

• jointly develop reusable, adaptable and composable multi-scale VPH workflow models,

• support evidence-based translational medicine at the point of care, and

• ultimately facilitate collaborations within the VPH community.

MD-Paedigree elaborates on a decade of developments initially pioneered in the European FP5

MammoGrid and FP6 Health-e-Child projects, which were then brought further in FP7 Sim-e-Child. More

particularly, it leverages on the grid Gateway concept, allowing scientists to abstract from the complexity of

underlying grids, clouds and other computing resources they need to use. Nowadays, Science Gateways

represent an important emerging paradigm for providing integrated infrastructures. According to Wilkins, a

Science Gateway is “a community-developed set of tools, applications, and data that are integrated via a

portal or a suite of applications, usually in a graphical user interface, that is further customised to meet the

needs of a specific community. Gateways enable entire communities of users associated with a common

discipline to use national resources through a common interface that is configured for optimal use.

Researchers can focus on their scientific goals and less on assembling the cyberinfrastructure they require.

Gateways can also foster collaborations and the exchange of ideas among researchers”. MD-Paedigree thus

intends to reuse the latest Service Oriented Architecture (SOA) based Gateway released in Sim-e-Child,

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

9

which enables secure and reliable access to abstracts from and integrates all forms of applications and data

useful to users. The Gateway materializes as a layered architecture of standard secure (generic medical)

services running on top of a grid infrastructure, which is physically installed at the participating clinical

centres. Thanks to these on-site access points, users can transparently utilize a number of heterogeneous

computing resources, ranging from local databases, to the distributed grid infrastructure regardless of their

location and available connectivity. The Gateway supports the major principles of an SOA and exposes a

significant set of biomedical utilities to date.

MD-Paedigree will extend the Gateway and demonstrate a reasonably well-scoped use-case of the Service

Oriented Knowledge Utility (SOKU) vision, as published by the European Commission in the Future for

European Grids: Grids and Service Oriented Knowledge Utilities report, to address the challenge of

delivering personalised care to patients.

MD-Paedigree will implement the SOKU vision, to facilitate the design and development of innovative

predictive models as reusable and adaptable workflows of data mining applications and turning the latter

into clinically validated decision support tools, made available at the point of care. This is what is illustrated

in the following figure, where reusable VPH models (in the centre) are incubated in the system with

progressive semantic enrichment and model transformations in a cycle (the yellow spiral) witnessing the

intervention of both automated database-guided learning and data integration and knowledge experts

validation. As these models become more mature, they are then clinically validated by participating centres

and concerned clinical researchers, and ultimately made available at the point of care thanks to the

physical distribution and computational nature of the MD-Paedigree model-driven infostructure.

Taking its roots from a well-established distributed digital repository, the MD-Paedigree VPH Infostructure

will thus hatch in a plethora of breakthrough decision support applications, as is illustrated with the petals

of the SOKU flower (top-left of Figure below).

Figure 1: SOKU Flower

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

10

4 Inherited	PCDR	infrastructure	as	a	CRO	

Installed on top of the existing PCDR infrastructure, the current solution provides 2 Nodes having the ability

to host science gateways, some central services and a web portal. The architecture is composed of

hardware described in section 5 and of different software described in section 6 to 10. The infrastructure

provides all the functionalities of connection and query on present data and some applications are already

integrated.

The current system is already fully functional and able to acquire data as soon as protocols and data

formats are defined.

4.1 Advantages	

The CRO architecture for the whole project has a main advantage: it is already installed and functional.

Added to this it provides a significant calculation capacity as described in section5.

The current power and configuration of the system can provide and run gateways for each institution in

order to create cluster data as if it would be in different locations. Moreover, it will be easy to move

virtualised gateways from OPBG to other sites if created.

4.2 Drawbacks	

One of the main functionality of the concept of distributed gateways consists of hosting data at the place of

the owner, allowing the system to work at least with local data if connection to other sites is lost.

Centralised CRO breaks this and creates a single point of failure from outside OPBG.

Depending on the size of data to import, data transfer using importers can be huge. According to this

statement, it is preferable to reduce as much as possible the network distance between data sources and

data storage. It is preferable to have local gateways that first filter data for queries in order to only transfer

the necessary data for a given query.

In PCDR, the storage has been calibrated for OPBG data only. The storing of information from so many

different sources may quickly overload the current storage elements.

4.3 Conclusion	

Such an installation can provide a complete solution for the beginning of the project providing the full

functionality set and allowing quick development and testing. However, the system would be much more

efficient if some other storage nodes were installed in some other institutions, particularly those

institutions providing data as set out in Errore. L'origine riferimento non è stata trovata. of this Document.

 	

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

11

5 Hardware	Architecture	

5.1 Node	Architecture	(Rome	and	Taormina)	

5.1.1 Current	installed	node	connectivity	schema	

Current architecture is composed of:

- 1 Node at OPBG Rome

- 1 Node at CCPM Taormina

- 1 Portal

- 1 Central Server

The nodes are currently installed and connected together through a

FastWeb secured connection. This allows both sites to share

information with ease.

Due to important latency in administrative rights and choice and to the

fact that no hardware has been funded within the project, no new

gateways have currently been installed since D14.1. However, UCL and

DHZB are supposed to install on site a gateway within the next few

weeks.

5.1.2 Node	composition	

The current nodes are composed of different hardware as defined in the following table:

 Quantity CPU MEM DISK

Service Container PER515-12-16-6T 2 12 16 6

Computing Node PER415-12-16-250 7 12 16 0,25

Data Dumper Virtual Machine 1 4 4 0,25

Switch PC5524 1 0 0 0

Total 112 148 14

 Cores GB TB

In the following, node’s elements will be represented according to the key below:

Gateway Importer Node

 	

Rome Taormina

CVIS

XCelera

CVIS

XCelera

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

12

5.1.3 Node	physical	installations	

This configuration is installed as presented in

the schema on the right.

The server installation is quite standard and

simple managing redundant power supply,

secured network connection for computer

management, and dedicated external

connection through a DMZ for the in the

cloud virtual machines installed on the

servers. Standard servers are deployed to

host as many gateway as needed and 2

storage elements are managing the data

storage. For the project’s beginning PCDR

storage elements should be sufficient to

store the project data, but if a systematic

storage of anonymised DICOM data require

much more space, adding a heavy storage solution (SAN or NAS) should be considered.

5.2 Portal	and	Central	Servers	

The current installation is also based on a few central components that are needed for the correct

behaviour of the whole system. These components are:

- AMGA central

- Portal

- Query dedicated node

5.2.1 AMGA	central	

AMGA Central is a server physically localised in Archamps in France that provides the synchronisation

abilities of the tables that need it. It is necessary for the system to perform correctly, but, if stopped, does

not block local updates of information nor queries.

5.2.2 Portal	

The portal is the main access point of the system; currently it is physically installed at OVH at Compiègne. It

provides the web front-end, and so if stopped, the main user interfaces would not be available, however

the core system and web-services will remain functional. In the future framework this single point of failure

may be removed by the installation of other portal servers at the main node sites.

5.2.3 Query	dedicated	node	

This node is a temporary node that is physically installed at Rome. This node provides database access to

the portal runs the distributed query on the global system. In future installations, this node should be

replaced by cloud-based calculation nodes that will be automatically instantiated on demand.

 	

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

13

5.3 Target	hardware	deployment	

5.3.1 Optimal	implementation	

The current system is functional as is but is not yet optimal. To be optimal, each information provider

should have their own node onsite. This would mean that all importers could run locally and store data

locally. Most of the traffic would be internal and all the data would stay physically on site when not

queried. This would also permit any centre to have fine-grained control of its own data particularly in terms

of access rights. Also, it is important to note that by choosing this implementation, with each node being a

source provider and the data being physically on site, isolating data of a particular site is as simple as

unplugging a wire or shutting down a server.

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6

Source 2

Source 1

Source 2

Source 1

Source 2

Source 1

Source 2

Source 1

Source 2

Source 1

Source 2

Source 1

5.3.2 Probable	implementation	

While the optimal technical implementation is as stated above, a compromise may be made in order to

meet budget and time constraints. In this implementation, only few nodes would store data and provide it

to the whole system. These node would be managing groups and rights and physically store the data, while

the others would just have importers (that in this case are exporters from their point of view). The

drawback of this implementation is that some institutions would host other institution’s data and in case of

a hardware problem the data provider would not have access to their data anymore. Also, in a case of

disagreement between the host and the hosted, the hosted won’t have any way to erase its data from the

system.

Site 4Site 2 Site 5

Source 2

Source 1

Source 2

Source 1

Source 2

Source 1

Site 3

Source 2

Source 1

Site 6

Source 2

Source 1

Site 1

Source 2

Source 1

In this example,

• Site 3 host data of site 1 and 2

• Site 4 is a standard node

• Site 5 is hosting the data of site 6

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

14

For the first step, OPBG have proposed to act as a CRO (Contract Research organization) providing

resources.

5.4 Load	capacity		

5.4.1 Storage	

Storage Load capacity has been evaluated and PCDR system have the capacity to store it.

CMP

Patient average storage size : 6 GB

Number of patient expected : 180

Total expected size : 1 TB

CVD

Patient average storage size : 2GB

Number of patient expected : 180

Total expected size : 0.54 TB

JIA

Patient average storage size :4 GB

Number of patient expected : 300

Total expected size : 1.2 TB

NND

Patient average storage size :9 GB

Number of patient expected : 290

Total expected size : 2.6 TB

Total Estimated Size : 5.34 TB

PCDR has a storage capacity of 6 x 1 Terabyte by storage machine that makes 4TB with backup (5 drives

RAID 5 and 1 for automatic recovery). 2 storage servers are installed in Rome and 2 in Taormina for a total

of 16TB capacity. This largely covers the need for the MD-Paedigree project. However, some other

considerations have to be taken into account (see 5.4.3)

5.4.2 Power	

The PCDR project has provided 12 computational servers to MD-Paedigree. For optimal functioning, each

gateway from the system has to be hosted by one physical machine. Some computational server for query

execution and tests environment are also required. For network speed and system administrative reasons,

OPBG Rome node has been loaded first and some gateways are created on OPBG CCPM Taormina’s node.

The current system is powered enough for the standard computational needs (everyday work, queries,

importation). Nevertheless, for big challenges external cloud resources may be needed, and for network

speed issues we may need to consider installing some resource on different locations at acquisition center.

5.4.3 Other	considerations	

Legal and ethics considerations imply that some centers are required to host their data by themselves

physically on-site. The MD-Paedigree infostructure team works on the installation of the gateway at these

places.

 	

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

15

6 FedEHR:	Storage	infrastructure	

FedEHR is a Pandora service that provides storage abilities for medical events and patient information. As a

Pandora service, all the interfaces of Pandora are exposed as web services consumable by other

applications, and user interfaces are integrated in the Portal.

6.1 Patient	centric	data	structure	

In accordance with to the latest data modelling concepts in the literature, FedEHR proposes a storage

model that is fully centred on the patient. All the data that is stored in the system is organised around a

data structure representing a patient model. The current description of FedEHR architecture provides an

evolutionary structure of data starting from the patient. Currently the data structure is oriented around

medical concepts of medical events and clinical variable. These abstract models can be refined and

specialised using metadata definitions created from physicians’ descriptions of diseases and exams.

FedEHR is a highly secure patient-centric and vendor-neutral EHR (Electronic Health Records) repository.

Leveraging on the cloud, FedEHR provides a distributed database for heterogeneous medical information

integration from different geographical locations. It gives a unique and integrated view of data and offers a

variety of tools to navigate and analyse data.

FedEHR is composed of 3 modules: Cloud, Big data, Analytics

6.2 FedEHR	Cloud	services	

FedEHR Cloud establishes cross-enterprise security and common virtualized environments for computing

resources management. Such innovative exoskeleton information systems allow healthcare professionals

to rapidly, securely and anonymously share medical information across the healthcare enterprise, while

setting a robust ground for demanding applications to develop limitlessly.

The following paragraph presents modules proposed by the solution, the Cloud mechanisms are detailed in

paragraph 0 	

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

16

MD-Paedigree Cloud Integration.

6.2.1 Desktop	Fusion	and	Terminal	Service	

The Desktop Fusion and Terminal Service makes it possible to expose and interact with advanced

applications in the cloud. This expert access is destined to users in need of powerful functions, from

advanced GUIs to UNIX-like command line interfaces.

6.2.2 Pandora	Amga	Node	Configuration	

The	Pandora	Gateway	is	using	a	distributed	architecture	where	the	whole	Information	System	is	kept	

in	interconnected	AMGA	databases.	This	Information	System	contains	the	gateway	information	which	

allows	them	to	inter-operate.	

6.2.3 Pandora	Pipeline	Service	

The Pipeline Service is a Web Service responsible for executing tasks inside the Pandora Gateway.

6.2.4 Pandora	Gateway	Saga	Service	

The Saga Service is a Web Service providing an abstraction layer allowing interacting with various grid or

even non-grid middleware or infrastructure.

6.2.5 Pandora	tomcat6	configuration	

Pandora Gateway specific tomcat configuration files.

6.2.6 Pandora	Gateway	utilities:		

• Pandora	management	utilities:	data	management-related	Java	archives	

• Pandora	misc	utilities:	miscellaneous	utilities	

• Pandora	 misc	 jSaga	 utilities:	 Saga-related	 jars	 containing	 jSaga	 Saga	 implementation	 and	

various	adapters	

6.2.7 Persistency	Service	

The Persistency Service is a backend service that indexes the datasets (images and clinical study data) in the

Analysis Base.

6.3 Big	Data	Federation	Service	

To design, instantiate and manage patient-centric vendor-neutral distributed big data silos.

The Big Data Federation Service allows to setup silos of medical sensitive data in the private cloud network

and to federate them into a single database. Aggregated data can then be queried, filtered, processed

securely and irrespectively of its geographical location and complexity. At the very heart of FedEHR, Big

Data makes it possible for healthcare professionals to access massive amounts of heterogeneous medical

data, to analyse trends, patterns, simulate and test treatments, or even advise on similar cases and

associated outcomes found in the network of connected electronic health records silos.

6.3.1 OPBG	Importer	

Some importers are written in java and are used in the export of data from cardiovascular routine systems

of OPBG (Rome) and CCPM (Taormina) to provide numerical metadata information about echocardiography

and textual information about examination conclusions.

The importers are:

• taking data from the routine system,

• normalising the data (using a hospital specific structure), and

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

17

• pseudonymising it (using 3 part storage).

Figure 2: Importers

In the future some ontological information such as ICD or SNOMED will be added. This is in order to provide

a uniform concept-based query capacity, keeping the ability to have a personal easy understandable data

structure at each node.

6.3.2 DPS	generic	Importer	

USFD and MAAT partners have developed a generic importer based on The Data Publication Suite (DPS)

connection abilities. A pivot exporting XML format that can manage both data structure, semantic

annotations and data values has been defined. Depending of the needs, anonymisation can be processed

by the DPS transport, done by the java complementary importer or using a hybrid plugin called by the DPS.

This generic connector allows to reuse the DPS software developed for VPH-Share for connection to a

hospital routine system. The DPS graphical interface is used to model data structure as a tree and some

annotations are added to indicate to the FedEHR repository which element of FedEHR repository of the

XML corresponds to a patient and which one corresponds to a medical event. Once defined the connector

is configured to run automatically periodically to enrich the repository.

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

18

Additionally to the DPS, a generic importer reading the pivot XML has been developed. This java importer

analyses the pivot XML to define if the type of the data declared already exists or not. Then it creates new

types when needed and pushes data into the repository. The java importer is directly invoked by the DPS

periodical execution making the process fully invisible for the final physician user.

6.3.3 Dicom	Importer	from	exported	pre-anonymised	data	

6.3.3.1 Context

In order to accelerate modelling tasks and permit to modellers to

start working before the infostructure is able to store data, a File

Sharing system has been used. This data represents a significant

amount of data and users do not want to repeat work again to

export the same data into the final repository. So in order not to

add extra work to physicians, it has been chosen to develop an

importer for data in the repository. According to the fact the data

in the repository is constituted at 99% of DICOMs, a special

importer has been developed to push all this data into the

repository.

6.3.3.2 Challenge

According to the law of most countries, the data shared in the file

sharing system has to be first anonymised. Unfortunately, instead

<?xml version="1.0" encoding="utf-8"?>
<DataInstance xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <Tables xmlns="http://vph-share.eu/dms/">
 <Table>
 <Name>Walks</Name>
 <D2rName>Walks</D2rName>
 <Fields>
 <Field>
 <Name>ankle_angle_r_z</Name>
 <D2rName>ankle_angle_r_z</D2rName>
 <Size>13156</Size>
 <Type>string</Type>
 </Field>
 <Field>
 ...
 </Field>
 </Fields>
 <Key>WalkID</Key>
 </Table>
 <Table>
 ...
 </Table>
 </Tables>
 <Name xmlns="http://vph-share.eu/dms/">mdptest</Name>
 <Guid xmlns="http://vph-share.eu/dms/">2a4ba63b-1c9c-4e9e-b4d4-a338415757f9</Guid>
 <PublishAddress xmlns="http://vph-
share.eu/dms/">vphsharedatatest.sheffield.ac.uk</PublishAddress>
 <Prefixes xmlns="http://vph-share.eu/dms/" />
 <Relationships xmlns="http://vph-share.eu/dms/">
 <Relationship PrimarySourceName="Protocol name" PrimaryTableName="Walks"
PrimaryFieldName="WalkID" SecondarySourceName="Protocol name" SecondaryTableName="Signals"
SecondaryFieldName="WalkID" Type="OneToMany" />
 <Relationship PrimarySourceName="Protocol name" PrimaryTableName="Demographics"
PrimaryFieldName="PatientID" SecondarySourceName="Protocol name" SecondaryTableName="Walks"
SecondaryFieldName="PatientID" Type="OneToMany" />
 <Relationship PrimarySourceName="Protocol name" PrimaryTableName="Signals"
PrimaryFieldName="SignalID" SecondarySourceName="Protocol name" SecondaryTableName="Parameters"
SecondaryFieldName="SignalID" Type="OneToMany" />
 </Relationships>
...
...
...

Figure 3 - Example of images that have
been anonymised by PACS system. Red

boxes hide data that are not
anonymised enough

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

19

of simplifying the work, it considerably increased the complexity of the process. Indeed, anonymising data

has two side effects:

• As far as anonymisation is done by different tools (the ones already existing at hospitals), it is

impossible to know whic patient is concerned, and then it is difficult to reunify patients when

having different exams.

• When patients are anonymised, the names and dates are altered, and it is difficult to find possible

derived data from not standardised elements.

So the challenge was to import data with a good anonymisation level and the ability to enrich patient

information with future exams.

6.3.3.3 Implementation

Even if anonymised by PACS systems depending on the configuration, the awareness of the technician that

exports and the different needs of anonymity of each country, anonymised data in the file sharing system

are not necessarily at a sufficient level of anonymisation for European constraints.

In accord with physicians and validated by the ethics comity, an arbitrary chosen ID has been defined for all

MD-Paedigree patients. In the file sharing system, patient information has been arranged in such a way that

the folder is named by this ID. From this folder a java importer executes a strong arbitrary anonymisation

process removing all fields that are not defined in a whitelist and forcing the Patient ID in DICOMS to the

chosen ID. Added to this, all importer writer partners will ensure that in the future the routine patient IDs

will always be translated in the anonymisation process to this ID.

This protocol ensures at the same time a high level of anonymity for patient data and the perennial ability

to enrich patients with future data.

 	

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

20

6.3.4 Patient	and	Cohort	Browser	

The Patient Cohort Browser allows navigating through the data in an integrated and harmonized manner.

The data is structured around the patient and patients are grouped into cohorts of interest. The Patient

Browser as its names indicates, is a portal integrated feature that allows physicians to access full

information about a patient from any the nodes of the system. It provides a complete medical history of

the patient regardless of the physical location of data.

In the alpha version the patient browser has been updated to add DICOM and file specific restitution with

integrated viewer for DICOM and ability to download DICOM images. Improvements have also been added,

giving the ability to model with multiple instances of elements to be correctly rendered.

 	

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

21

6.4 FedEHR	Analytics	

At the top of FedEHR-powered e-infrastructures, Analytical tools can be enacted to provide scientific

insights onto large volumes of medical data, as well as advanced visualisation techniques to revolutionize

our understanding of complex pathophysiological phenomena.

6.4.1 Query	System	

Stored data is not useful without a query system. FedEHR provides an inter-site query system presented as

an SQL query for end users. These queries are managed by a query management system which generates a

resultset that can be downloaded in a variety of formats and a graph visualisation tool.

Alpha version adds some functionalities for generating queries. New options propose different choices in

query execution.

• “Query Join Type” : the choice is given between Medical Event, Medical Bag and Patient

o Medical Event will provide the query that will look for all restrictions in the same Medical

Event (same exam)

o Medical Bag provide the query that will look for all restrictions in the same Medical Bag

(same visit or follow up depending of the modelling choices)

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

22

o Patient provides the query that will look for all restrictions in the same Patient (during his

entire life with all the stored exams)

• “Query execution options” : the choice is given between Multi nodes, Retrieve nodes, Local node

o Multi nodes will generate a fast executing query that will query all nodes one by one to get

data corresponding to the chosen restrictions in each node.

o Retrieve nodes will generate a query that will be slow but will arrange the system to join

information between all the nodes. This allows to query information at patient level even if

the patient is followed up in different hospitals of the network.

o Local node will execute the query on the selected node, depending of the gateway chosen

by the user at configuration time.

The last version of query tool also provides the ability to run an R script at different levels. R scripts are

possible to run on each site result and/or on the aggregated result set of all nodes.

6.4.2 FedEHR	Similarity	Search	

The similarity search algorithm and patient cluster rendering based on query results are provided by the

Portal. This mechanism enables physicians to travel through a similarity network graph and find clusters of

similar patients. They can then retrieve all the anonymised information of any of the displayed patients. In

this way they can identify interesting cases through the Patient Browser.

This first implementation is only based on pre-calculated queries and needs some more work to permit end

users to use it by defining on demand criteria of similarities.

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

23

According to the unplanned amount of work represented by the data collection process, it has been

decided to abandon this interface for the current reporting period and the following. It will be updated in

the future if the allowed budget allows it.

6.5 Packages	Version	

6.5.1 Gateways	

pandora-gateway-desktopfusion-management .. 2.1.0

pandora-gateway-desktopfusion-splash-translational-medecine 1.1-1

pandora-gateway-gateone-management ... 2.1.0

pandora-gateway-idal-amga-node-configuration ... 2.1.0

pandora-gateway-idal-fedehr ... 2.2.0

pandora-gateway-sal-desktopfusion ... 2.1.1

pandora-gateway-sal-gateone .. 2.1.1

pandora-gateway-sal-pipeline ... 2.1.0

pandora-gateway-sal-saga .. 2.1.0

pandora-gateway-sl-core .. 2.1.3

pandora-gateway-sl-utils-management .. 2.1.6

pandora-gateway-sl-utils-misc .. 2.1.12

pandora-gateway-sl-utils-misc-jsaga ... 2.2.1

pandora-wbar .. 1.1-1

6.5.2 Portal	

data-management-portlet ... 1.6.0

desktopfusion-portlet .. 1.6.0

fedehr-chart-portlet .. 1.6.0

fedehr-repository-supervision-portlet .. 1.6.0

fedehr-similarity-search-portlet .. 0.0.1

google-earth-portlet .. 1.6.0

pandora-ext ... 1.0

pandora-global-lib ... 1.6.0

pandora-services-portlet ... 1.1

patient-browser-portlet .. 1.6.0

terminal-portlet ... 1.6.0

7 eCRF	

During the project user specifications, a need of a new acquisition tool for cases has been registered.

According to the need and in order to simplify the process of importation of this new data, gnubila decided

to develop and provide to the project a tool called eCRF (electronic Clinical report form). This application

consists of a configurable survey exposed through a web interface hosted by a server installed in each data

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

24

acquiring centre. This tool has been conceived and developed with the assistance of UCL ,following a semi-

agile process whilst the end-users have been consulted at each step of definition. This development has

achieved the implementation of one survey of 120 pages for CMP domain adapted to Italy and UK.

 	

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

25

8 DCV:	Data	Curation	and	Validation	

The new web-based DCV tool uses a client-server architecture. The following figure shows its

architecture.

Figure 4: Architecture of the new DCV tool. It is connected with the MD-Paedigree infrostruction throu gh

Gnubila’s API

For more information about DCV’s implementation please consult deliverable “D15.2 - DCV curation tools

and services to automatically and manually acquire high-quality curated data”

 	

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

26

9 AITON:	Statistical	Models	

In the current implementation, AITON is provided as a standalone application that is able to get

information from a FedEHR query and provide statistical models in the form of graphical probabilistic

models dealing with correlation finding and criteria impacts.

At this time, the integration is based on file transfer and program installation. As with the previous tool, the

full integration process should provide a direct streamed data acquisition. The infostructure may also

provide a cloud access to the application thus avoiding a local installation.

10 Case-based	retrieval	
Case Base retrieval is currently lightly integrated to the Portal, and it is able to run on some extract from

FedEHR queries containing clinical narratives. Using onto-terminologies, it is able to classify the cases and

find similar cases in the database providing back the ID of the patients corresponding to the criteria. A

dynamic functional link back to Patient browser is provided.

Currently the case-based retrieval is integrated as an IFrame in the portal, but a better integration is

needed. To do so, the portal will have to integrate the case-base server and its dependent services.

A Web service call to the case based retrieval is implemented and functional but the new fully integrated

interface has not been developed yet.

 	

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

27

11 GPU	based	processing	and	computation	
Graphics Processing Units (GPUs) are dedicated processors, designed originally as graphic accelerators.

Since CUDA (Compute Unified Device Architecture) was introduced in 2006 by NVIDIA as a graphic

application programming interface (API), the GPU has been used increasingly in various areas of scientific

computations due to its superior parallel performance and energy efficiency [Kirk et al., 2010].

The GPU is viewed as a compute device which is able to run a very high number of threads in parallel inside

a kernel (a function, written in C language, which is executed on the GPU and launched by the CPU). The

threads of a kernel are organized at three levels: blocks of threads are organized in a three dimensional

(3D) grid at the top level, threads are organized in 3D blocks at the middle level, and, at the lowest levels,

threads are grouped into warps (groups of 32 threads formed by linearizing the 3D block structure along

the x, y and z axes respectively).

11.1 Optimized	computation	of	stencil	based	algorithms	

11.1.1 Introduction	

Stencil computation is a computational pattern on an n-dimensional grid, whereas each location is updated

iteratively as a function of its neighbouring locations. This pattern is found in several application domains,

like image processing, computational fluid dynamics, weather prediction, etc.. Previous studies have shown

that, if regular Cartesian grids are used, GPU based implementations are able to significantly speed up the

execution compared to regular CPU based implementations [Phillips et al., 2010], [Shimokawabe et al.,

2011].

The goal of the herein reported work was to evaluate the performance of 3D stencil based algorithms on a

series of recent GPUs. Previous research activities have focused on single precision computations. To meet

the high accuracy requirements, inherent for scientific computations [Nita et al., 2013], [Zaspel et al.,

2013], we focus on double precision computations.

11.1.2 	Methods	and	implementation	

For studying 3D stencil based algorithms implemented on graphics processing units, we consider the 3D

unsteady heat conduction problem which is modeled as a second order partial differential equation

describing the distribution of heat over time over a given 3D space. For the numerical solution we apply a

finite difference method on a 3D grid of points. The solution scheme is fully explicit: the computation of the

new value at any grid point is fully independent from the computations at the other grid points.

In the following we introduce two baseline GPU-based implementations of the unsteady heat diffusion

problem. For the first baseline implementation (called in the following 3DBase), each grid point is handled

by a separate thread. Two buffers are allocated, one for the values at the previous time step and one for

the values at the new time step. To eliminate the memory copy requirement from one buffer to the other,

the buffers are swapped at the end of each time step. To compute the new value at a grid point each

thread performs seven global memory read operations at each time step. Since global memory operations

are very slow, this represents a severe limitation of the kernel performance.

To allow for a better memory usage, we also consider a more efficient approach, whereas threads and

thread-blocks are organized into 2D structures. The computational grid is divided into x-y planes and the

subdomains are assigned to separate thread blocks. Each 2-D slice is represented through the grid points in

the x and y directions, providing for the threads the (i,j) indices of the grid points. A loop is then used to

traverse the grid in the z-direction and obtain the final k coordinate (this kernel version is called in the

following 2DBase). Unlike the 3DBase implementation, for which a thread updates a single point, herein the

same thread operates on several grid points. Next, we describe a series of optimization techniques for the

two baseline implementations. We focus mainly on minimizing warp divergence and global memory

accesses. Besides global memory, the GPU architecture provides fast on-chip memory, registers and shared

memory, which is distributed between threads and thread blocks respectively.

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

28

The starting point for the new kernel is the 3DBase implementation. Since shared memory is allocated at

thread block level, threads can cooperate when populating data blocks allocated in the shared memory.

Shared memory arrays of size blockXDim ∙ blockYDim ∙ blockZDim are allocated. Each thread within a block

loads the value of the grid point it handles from global memory to shared memory. With this technique,

threads lying at the border of a thread block do not have access to all their neighbors and cannot compute

the corresponding new values. Hence, the execution configuration is designed so as to ensure block

overlapping in all directions (3DShMOverL). Starting again from the 3DBase implementation, a different

shared memory based strategy is developed. The shared memory arrays are padded with an additional slice

on each side of the 3D block leading to a total size of (blockXDim + 2) ∙ (blockYDim + 2) ∙ (blockZDim + 2).

First, each thread populates the value of the grid point it handles in shared memory. Next, the threads

located on the boundary of the block load the remaining data slices from global memory to the shared

memory. To load points located outside of the block, conditional operations are introduced which cause

branch divergence. Thus, each thread of a thread block has access to all its neighbors and is able to update

the corresponding grid point (no overlapping between thread blocks is required - 3DShMNoOverL). The

2DBase implementation can be optimized by storing redundant data (values from different slices) in

registers - 2DReg. As for the kernels with 3D thread blocks, shared memory can also be used to reduce

global memory accesses for the kernels with 2D thread blocks. The size of the shared memory array chosen

for this kernel version is (blockXDim + 2) ∙ (blockYDim + 2). To allow each thread of the thread block to

compute the new value of the corresponding grid point, additional slices are populated at each border of

the 2D shared memory array.

For the 2DShM implementation version the loading of the central section of the shared memory does not

introduce any divergent branches since it is not conditioned. The loading of the slices with y index equal to

0 or blockYDim + 2 introduces a maximum of two divergent branches, one for each half-warp, depending on

the compute capability of the GPU. On the other hand, the slices with x index equal to 0 or blockXDim + 2

lead to divergent branches and only one thread of the entire half-warp performs a read operation. This

aspect may be alleviated by the cache memory, but this depends on the size of the slices.

To reduce branch divergence, the shared memory array is used only for the central section and for the

slices with index equal to 0 or blockYDim + 2, while the other values are read from the global memory and

stored into registers. Only the threads lying at the left or right border perform separate global memory

reads (Figure 5 - 2DShMReg), while the other values are safely read from the shared memory.

Figure 5: 2DShMReg: Northern and southern slices are read from the shared memory, eastern and western

values from the global memory

Results

To evaluate the performance of the different strategies for running 3D stencil based algorithms on GPUs,

we used three different NVIDIA GPU cards: GeForce GTX 480, GeForce GTX 660M and GeForce GTX 680

(the first one is based on the Fermi architecture, while the other two are based on the Kepler architecture),

and the CUDA toolkit version 5.5. The numerical solution was obtained on a grid of 128x128x128 and was

identical for all three GPU cards and for all implementation versions down to the 15th decimal, i.e. close to

the precision of the double-type representation in computer data structures.

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

29

Table 1 displays the execution times for one time step for the three above-mentioned GPU cards, obtained

for the seven different kernel versions introduced in the previous section. The GTX660M card leads to the

largest execution times although it has been considerably later released compared to the GTX480 card. This

can be explained however by the fact that this card was specifically designed for low power consumption,

so as to be used in notebook PCs The GTX680 is the best performing card. The ratio of the execution times

for the GTX660M and GTX680 cards varies between 4.26 and 5.56 for different kernel versions. This roughly

reflects the inverse of the power consumption ratio, which is equal to 3.9.

Method GTX480 GTX660M GTX 680

3DBase 1.7 3.45 0.62

3DShMOverL 3.5 6.17 1.13

3DShMNoOverL 1.8 3.78 0.73

2DBase 1.2 3.09 0.63

2DReg 0.9 2.47 0.58

2DShM 1.2 2.87 0.59

2DShMReg 1.09 2.32 0.48
Table 1: Execution time [ms] for a single time step, obtained for the seven different implementation ve rsions on

three different GPU cards

Interestingly, whereas for the GTX660M and the GTX680 cards the 2DShMReg kernel performs best, for the

GTX480 card the 2DReg kernel leads to the smallest execution time. Shared memory based optimizations

were particularly important for pre-Fermi GPU cards. For the Fermi architecture these optimizations were

not always leading to a better performance due to the fact that the global memory read operations were

cached at L1 level. Even though the cache size is regularly small, it is efficient for algorithms based on

Cartesian grids where data access patterns are regular [Shimokawabe et al., 2011]. For the Kepler

architecture however the L1 cache is no longer used for caching global memory read operations, but only

for register spilling. Hence, for the GTX480 card (Fermi), since the L1 cache is intensively used for caching

global memory read operations, the 2DReg kernel outperforms the 2DShMemReg kernel. On the other

hand, for the GTX660M and the GTX680M, since the L1 cache functionality is limited to register spilling,

shared memory usage became more important, illustrated by the better performance of the 2DShMReg

kernel.

11.2 Single-GPU	 solution	 of	 very	 large	 systems	 of	 linear	 equations	 using	 the	

preconditioned	conjugate	gradient	method	

11.2.1 Introduction	

Our focus is on developing fast solutions for very large sparse linear systems of equations of the type A ∙ x =

b, using parallel methods, where A is an NxN symmetric positive definite matrix. Such systems routinely

appear when computing numerical solutions to PDEs, such as but not limited to the Finite Element Method.

A widely-used iterative approach for solving such linear systems is the Conjugate Gradient (CG) method

[Hestenes et al., 1952]. In each iteration, the CG method performs a Sparse-Matrix Vector multiplication, a

process that converges in at most N iterations to the exact solution. While current GPU technology excels in

fast processing of a large number of parallel computational threads, its global memory size can still create a

bottleneck in solving large linear systems. We have developed a methodology for overcoming this

limitation using a streaming based algorithm. Parallel algorithms for iterative solutions to the above system

have been proposed already, e.g. [Ortega, 1988], and using the CUDA framework [Verschoor et al., 2012].

However, such solutions do not take into account RAM memory limitations on the size of the solution.

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

30

11.2.2 Methods	and	implementation	

We propose a streaming based algorithm in order to overcome the global memory size limitation of the

GPU, so as to be able to solve large systems arising in numerical solutions of various biomechanical PDEs.

These may include but are not limited to fluid flow, bone or soft tissue deformation, etc. GPU cards have

limited RAM memory (currently up to 12GB), which limits the size of the system of equations (currently to

around 12 million equations). To alleviate this limitation we introduce a streaming based solution whose

core idea is to store the matrix A on the CPU RAM, and to transfer it slice by slice to the GPU during the

matrix-vector multiplication step of the PCG method (Figure 6 & Figure 7). Our streaming based strategy

can be used either in the context outlined in the next section, or in the more general context of iterative

methods that need to handle during each iteration an operation involving data that exceeds the GPU

memory.

Figure 6: Slicing strategy for matrix A and

succesive memory transfer to the GPU

Figure 7: Streaming-based execution of the matrix-

vector multiplication

When applying the PCG method, the majority of the memory required for the solution is occupied by

matrix A and by the matrix used for the preconditioning [Saad, 2003]. To reduce the memory requirements,

here we apply a Jacobi (diagonal) pre-conditioner which is stored as a vector, while A is stored in a sparse

matrix format (e.g. ELLPACK) [Bell et al., 2008]. The other operations of the PCG method are either vector-

vector or scalar-vector operations. The seven vectors are stored throughout the entire execution on the

GPU due to their limited memory size. Figure 6 displays the slicing strategy of A. To ensure coalesced

memory accesses by the threads of the same warp, A is stored in column major order. The slicing however

is performed on a row basis. To limit the number of copy operations to two for one slice, we still store data

in column major order, but only at slice level (all values of one slice are stored in consecutive locations). To

reduce the execution time, the memory transfer operation of one slice is overlapped with the processing of

another slice. To implement the overlapping behavior, two memory slices are allocated on the GPU

(marked ’A’ and ’B’ in Figure 6): while data is copied into one slice, the other one is processed.

The matrix-vector multiplication is performed by using two different streams: one for the memory transfer

operations – host (CPU) to device (GPU) – and one for the processing of the slices – kernel execution (figure

1.2.1(b)). The operations of different streams are executed out of order and need to be synchronized.

Therefore we use CUDA events: an event (i)1 is recorded after copying slice i from host to device, while an

event (i)2 is recorded after processing slice i. The synchronization at events (i)1 is used to enable the

processing of one slice only after the corresponding memory transfer operation is finished. The

synchronization at events (i)2 is used to enable the overwriting of one slice only after it was processed. This

ensures a correct synchronization between the streams, irrespective of the relative duration of the memory

transfer and processing operations.

11.2.3 Results	

This section presents specific results for a bone structure analysis application, where Cartesian Finite

Element (FE) models are typically used, whereas 3D bone tissue voxels obtained from microCT (computed

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

31

tomography) are converted into equally sized hexahedral finite elements [van Rietbergen, 2001]. To test

the method from section 2, we used four different FE models. For each model, a volume of cube was

meshed with 8-node hexahedral elements, with each node having 3 DOFs (translation in x, y and z

dimensions). The four linear systems were first solved with the commercial software ANSYS (Release 14.0.3,

ANSYS, Inc) on a six-core processor (Intel (R) Xeon (R) E-5-2670. 2.60 GHz) with 256 GB of RAM. Next, we

solved the systems with the streaming based GPU algorithm on an eight-core i7 processor, 3.4GHz, with

8GB of RAM and a NVIDIA Kepler GTX680 graphics card, with 2GB of RAM. Table 2 compares the execution

times of the CPU and GPU based algorithms. The speed-up varies between 44.2x and 181.2x for the largest

system of equations.

Config. Nr. of

equations

CPU - Ansys Streaming based GPU algorithm

Exec. time [s] Exec. Time [s] Nr. iter. Number of slices in

A

Speed-

up

Test 1 2.260.713 3441 77.8 525 30 44.2

Test 2 4.102.893 21334 175.9 647 30 121.3

Test 3 5.582.601 35125 268.2 721 18 131.0

Test 4 7.057.911 66046 363.1 785 44 181.9
Table 2: Execution time [ms] for a single time step, obtained for the seven different implementation ve rsions on

three different GPU cards

11.3 Multi-GPU	 solution	 of	 very	 large	 systems	 of	 linear	 equations	 using	 the	

preconditioned	conjugate	gradient	method	

The method described in the previous section was also used to evaluate multi-GPU based implementation

of the preconditioned conjugate gradient method.

11.3.1 Multi-node	multi-GPU	based	implementation	of	the	preconditioned	conjugate	gradient	

The strategy we implemented for running the PCG method on multiple GPUs is:

One node is considered to be the master and performs all operations which do not involve the matrix-

vector multiplication (initialization, copy operations, vector-vector operations, scalar-vector operations).

All nodes, including the master node, perform the matrix-vector multiplication step:

Each GPU stores a section of matrix A, which includes multiple slices (data transfer to the various GPUs is

performed during initialization). All sections are approximately equal.

At each iteration, before starting the matrix-vector multiplication, each GPU receives the vector values

used during the multiplication.

Each GPU performs in parallel the matrix-vector multiplication for the section of the matrix which was

assigned to it.

Each GPU sends the resulting vector section back to the master node.

The Message Passing Interface (MPI) is used for transferring data between the nodes. The implementation

described in this section is motivated by two goals:

Reduce the execution time of a single-GPU based implementation

Handle cases when matrix A does not fit into the RAM memory of the CPU

Table 3 displays the results for a two-node configuration for the Test 2 and Test 3 configurations used in the

previous section. As one can observe, if a 1 Gbit/s node-to-node transfer speed is used the execution time

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

32

increases compared to the single-node implementation. This is given by the time required to transfer the

vectors at each iteration. Conversely, if a 10 Gbit/s node-to-node transfer speed is used, the execution time

decreases by a factor of around 1.5, which means that the time spent during data transfer is

overcompensated by the time saved through the parallel computation of the matrix-vector product.

Configuration
1

Node

2 Nodes

(1Gbit/s)

2 Nodes

(10 Gbit/s)

Test 2 176s 450s 116s

(1.51x)

Test 3 268s 704s 179s

(1.50x)
Table 3: Comparison of single-node and multi-node G PU based implementation of the PCG method

11.3.2 Single-node	multi-GPU	based	implementation	of	the	preconditioned	conjugate	gradient	

The strategy described in the previous section was also used for a hardware configuration containing

multiple GPUs in a single node. The major difference is that instead of using MPI to transfer data from one

node to another, all data transfers are performed through the PCI Express bus. The specific hardware

configuration used for testing is: E6989 Rampage IV Extreme Main Board which has 4 PCI slots (2 at x16, 2

at x8), 3 GPUs: 1xGTX Titan Black, 2x GTX680. Due to the different transfer speeds over the PCI bus, the

ideal partitioning of slices to different GPUs depends on the PCI bus to which each GPU is physically

connected. Hence, we implemented a methodology for automatically determining the number of slices for

each GPU so as to obtain an execution time for the matrix-vector multiplication, which requires

approximately the same time on each GPU (so as to avoid idle times for the processors). Table 4 displays

the results for three different configurations. One can observe that the multi-GPU implementation leads to

smaller execution times. However, the measured speed-up is smaller than the theoretical value due to

transfer of data between GPUs.

Configuration
Slice

distribution
Exec. Time [s]

Speed-up

Measured Theoretical

Titan (x16) 55 164.1 ± 0.87 - -

Titan(x16), 680(x16) 35/20 120.0 ± 0.64 1.37 1.57

Titan(x16), 680(x8), 680(x8) 35/10/10 137.1 ± 0.69 1.20 1.57
Table 4: Comparison of single-node single-GPU and mu lti-GPU based implementation of the PCG method

11.4 Random	forest	based	classification		

11.4.1 Introduction	

Machine Learning algorithms have been proven to be useful in a variety of application domains [Zhang,

2000]. Herein we focus on one of the most common machine learning applications: classification. We study

how to effectively implement a random forests (RF) algorithm for data classification on GPUs by evaluating

the performance of the algorithm in terms of execution time, compared to the CPU-based version. The

random forest consists of multiple decision trees which can be generated and evaluated independently and

can classify large amounts of data, described by a large number of attributes. Therefore, the random forest

algorithm is very well suited for a massively parallel approach (implemented on GPUs).

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

33

11.4.2 Methods	and	implementation	

Random forest is an ensemble classifier consisting of decision trees that combines two sources of

randomness to generate base decision trees: bootstrapping instances for each tree and considering a

random subset of features at each node [Breiman, 2001]. It is a supervised learning method: the training

data consists of a set of training examples; each example is a pair consisting of an input object (typically a

vector of features) and the corresponding desired output value. A supervised learning algorithm analyzes

the training data and produces a model, which is then used to predict the output for new examples.

During the learning phase, the data that has reached a given leaf is used to model the posterior

distribution. During the test phase, these posterior distributions enable the prediction for new unseen

observations reaching a given leaf.

Because the training phase is done offline, the time required by this phase is not critical. Therefore, we only

focus on the acceleration of random forest classification since in most of the cases this phase is done online

and the execution time may be critical. The algorithm behind the testing phase is based on the fact that

each internal node of a tree contains a simple test that splits the space of data to be classified and each leaf

contains an estimate based on training data of the posterior distribution over the classes. The input data

transformed into a feature vector is classified by propagating the information through all the trees and

performing an elementary test at each node that directs it to one of the child nodes. Each decision node

contains a test function that compares a feature response with a threshold to generate a binary decision.

Once the sample reaches the leaf in each three in the forest, the posterior probabilities are combined

(voting or averaging) to compute the final posterior probability. Traversing a large number of decision trees

sequentially is ineffective when they are built independently of each other. Since the trees in the forest are

independently built and the only interaction is the final counting of the votes, the voting part (classification)

of the RF algorithm can be efficiently parallelized [Grahn et al., 2011].

The first step of the GPU based implementation of the RF classifier is to load all decision tree data

structures of a RF into the GPU memory. Prediction is performed in a loop over all pixels of the input image.

We determine the feature response for each pixel which will become the input vector for each tree. Each

decision tree is then traversed in parallel to retrieve the probability distribution over all classes for the

given pixel. The probability distributions from every tree in the forest are averaged and, finally, the result is

copied back into the CPU memory.

To accelerate prediction on the GPU, we use multiple threads to process each image and multiple threads

to process the RF trees in parallel. After images are loaded, we calculate the integral image in a pre-

processing step. Calculating image integrals is expensive with respect to processing time. We accelerate it

by calculating the integral for each of the five image channels in parallel with separate threads on the GPU.

Prediction time depends on the complexity of the features but scales linearly with the number of trees,

depth of the trees and the number of pixels in the input image. To take advantage of the massively parallel

computing power of the GPU, instead of pre-computing all values for all possible features, we sampled the

feature space at runtime and calculated the feature responses on demand.

Our strategy for storing the RF decision trees involves the mapping of the data structure describing the RF

to a 2-D texture array which is stored in the GPU texture memory. These texture arrays are read only, and,

since they are cached, this improves the performance of reading operations [Grahn et al., 2011]. The data

associated with a tree is laid out in a four-component float texture, whereas the data of each node is stored

on three separate columns in each channel of the texture array. We store the data of each node of a tree in

the forest in sequential horizontal positions and different trees on separate rows. Data stored in the texture

memory contains the position of the left and right child nodes, threshold values and all feature parameters

required to evaluate the test for a node. If a node cached in the texture memory is a leaf node, then we add

the probability distribution learned during training and the index of the leaf. To navigate through the tree

during the evaluation, we use the tex2D function wich performs a texture lookup in a given 2-D sampler

based on 2-D node coordinates and channel information (Figure 8: Algorithm for the binary decision tree

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

34

evaluation). Our strategy involves launching a kernel which evaluates the probability of the random forest

with the number of threads equal to the number of candidates. As the number of feature candidates can

exceed the maximum number of threads per block with a maximum of 1024, 1536 and 2048 for compute

capability 1.2/1.3, 2.x and 3.x, respectively, several thread blocks are launched.

Figure 8: Algorithm for the binary decision tree ev aluation

11.4.3 Results	

This section presents specific results for a spine structure detection application, whereas the 3D input

image was obtained from microCT (computed tomography) and where the random forest classifier is used

to detect lesions. After the system was trained, tests were run with three different implementations of the

classification algorithm. The implementation was tested with two available data sets and performance

benchmarks for our implementation have been compared with two CPU based implementations. The

experimental results indicate that our GPU-based implementation of the Random Forest algorithm

outperforms the two CPU based algorithms (CPU single-core and CPU multi-core).

To test the method for the bone lesion detection, we used a Random Forest detector consisting of 100

trees, 27K normalized candidates (voxels) for each vertebra and 12K features. The execution configuration

of the classification kernel specifies that the number of threads is equal to the number of candidates (27K),

each block contains 128 threads (27K/128 blocks are used) and each thread traverses a candidate through

all trees of the random forest.

Prediction time was compared on a machine equipped with Intel Core i7 CPU and a NVIDIA GPU GeForce

GTX Titan Black. Table 5 compares the execution times of the CPU and GPU based algorithms. The speed-up

varies between 170x and 190x compared to the single-core implementation and between 24x and 28x.

Table 6 displays the total execution time which includes various other non-parallelized steps like the

loading of the input image, etc. The RF based position detector classifier occupies the vast majority of the

total execution time (~60%).

Implementation Patient 1 Patient 2

CPU Multi-core 27.62 ± 0.39s 48.60 ± 0.41s

CPU Multi-core + GPU 17.85 ± 0.32s 22.57 ± 0.34s
Table 5 : Comparison of execution times of CPU and G PU based algorithms for the RF classifier

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

35

Implementation Patient 1 Patient 2

CPU Single-core 73.01 ± 0.58s 182.33 ± 0.64s

CPU Multi-core 10.19 ± 0.15s 27.00 ± 0.25s

CPU Multi-core + GPU 0.421 ± 0.02s 0.979 ± 0.03s
Table 6: Total execution time for the detection sys tem

11.5 Non-invasive	assessment	of	aortic	coarctation	

11.5.1 Introduction	

The Lattice Boltzmann Method (LBM) has been introduced in the 80’s, and has developed into an

alternative powerful numerical solver for the Navier-Stokes (NS) equations for modelling fluid flow. Due to

the high computational requirements, there has been a lot of interest in exploring high performance

computing techniques for speeding up the LBM algorithms. Herein we introduce a parallel implementation

of the LBM designed for blood flow computations. To meet the high accuracy requirements of blood flow

applications, computations are performed with double precision. The method is used for computing blood

flow in a patient-specific aorta geometry with coarctation (CoA), containing the descending aorta and the

supra-aortic branches. CoA is a congenital cardiac defect usually consisting of a discrete shelf-like narrowing

of the aortic media into the lumen of the aorta, occurring in 5 to 8% of all patients with congenital heart

disease [Ringel et al., 2007].

11.5.2 Methods	and	implementation	

We considered the single relaxation time version of the equation, based on the Bhatnagar-Gross-Krook

(BGK) approximation, which assumes that the macroscopic quantities of the fluid are not influenced by

most of the molecular collisions: For a more detailed description of the Boltzmann equation and the

collision operator we refer the reader to [Succi, 2001]. The current study focuses on 3D flow domains: we

used the D3Q15 lattice structure.

The boundary conditions (inlet, outlet and wall) are crucial for any fluid flow computation. For the LBM, the

macroscopic quantities (flow rate/pressure) cannot be directly imposed at inlet and outlet. Instead, the

known values of the macroscopic quantities are used for computing the unknown distribution functions

near the boundary. For the inlet and outlet of the domain we used Zou-He [Zou et al., 1997] boundary

conditions with known velocity. For the outlet we used homogeneous Neumann boundary condition. The

arterial geometry has complex boundaries in patient-specific blood flow computations, and hence, for

improving the accuracy of the results, we used advanced bounce-back boundary conditions based on

interpolations [Bouzidi et al., 2001]. The solid walls are defined as an isosurface of a scalar field, commonly

known as the level-set function.

In the following we focus on the GPU based parallelization of the above-described LBM. The LBM is both

computationally expensive and memory demanding [Astorino et al., 2012], but its explicit nature and the

data locality (the computations for a single grid node require only the values of the neighbouring nodes)

make it ideal for parallel implementations. Each node can be computed at each time step independently

from other nodes. A first important difference between the CPU and the GPU implementation of the LBM is

the memory arrangement. Regularly, on the CPU, a data structure containing all the required floating-point

values for a grid node is defined, and then an array of this data structure is created (the Array Of Structures

approach – AOS). This approach is not a viable solution on the GPU because the global memory accesses

would not be coalesced and would drastically decrease the performance. Instead of AOS, the Structure Of

Arrays (SOA) approach has been considered [Astorino et al., 2012]: a different array is allocated for each

variable of a node, leading to a total of 35 arrays. The memory access patterns for the AOS and SOA

approaches are displayed in Figure 9 for the three velocity components.

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

36

Two different kernels have been defined and are called at each iteration. Kernel 1 first computes the

macroscopic quantities (velocity and density), by iterating through the 15 probability distribution functions.

Then it applies the Zou-He boundary conditions at the inlet of the domain and it performs the collision step:

first the equilibrium distribution function is computed and then the new probability distribution functions

are determined. The second kernel focuses on the streaming step, the interpolated bounce-back boundary

condition and the outlet boundary condition. All these operations require information from the

neighbouring nodes. The operations of the second kernel are more complex since the grid nodes located at

the boundary require a different treatment than the other nodes. Due to the high accuracy requirements of

blood flow computations, and unlike previous researches, all computations were performed with double

precision. Because the arrays and the execution configuration are one-dimensional, it is necessary to map

the three-dimensional coordinates inside the grid to a global index used to access the data from the arrays.

The LBM is usually applied for a rectangular grid. For blood flow computations, the rectangular grid is

chosen so as to include the arterial geometry of interest. In this case though, the fluid nodes represent only

1/5 or less of the total number of nodes. Hence, if the nature of the nodes (fluid/solid) is not taken into

account, around 80% of the allocated memory is not used and around 80% of the threads do not perform

any computations. To avoid this problem, we used an indirect addressing scheme, displayed in fig. Figure

10: Indirect addressing. Memory is only allocated for the fluid nodes and an additional array (called fluid

index array) is introduced for mapping the global index determined with (1.5.7) to the fluid nodes arrays

(negative values in the fluid index array correspond to solid nodes). The content of the fluid index array is

determined in the preprocessing stage on the CPU and is required only during the streaming step.

11.5.3 Results	

To compare the performance of the CPU based implementation of the LBM with the GPU based

implementation for double precision computations, we considered three different NVIDIA GPU cards:

GeForce GTX 460, GeForce GTX 650 and GeForce GTX 680. The CPU based implementation was run on an

eight-core i7 processor using both single and multi-threaded code. Parallelization of the CPU code was

performed using OpenMP. Three different 3D benchmark applications were first considered for

determining the best performing GPU card: Poisseuille flow, lid-driven cavity flow and flow in an elbow

shaped domain. The performance improvements were significant (speed-up varying between 11 and 44x

when compared to the multi-threaded CPU-based implementation), demonstrating that a GPU based

implementation of the LBM is superior to a multi-core CPU implementation. The best performance is

obtained for the GTX 680.

Figure 9: Memory access patterns: Array of

Structures (top), Structure of Arrays (bottom);

Figure 10: Indirect addressing

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

37

Once the GTX680 was determined as best performing GPU card for double-precision 3D computations, we

used it to compute blood flow in a patient-specific aorta model with coarctation. To obtain the

correspondence between the lattice units and the physical units, we used the method described in [Latt,

2007]. The computations were initialized with the equilibrium distribution function, and for the current

research activity we focused on steady-state computations, i.e. we imposed the average value of the flow

rate profile specified in the challenge. The grid size was set to 92x156x428 (6142656 nodes), of which only

518969 represented fluid nodes (less than 10%). Figure 11 displays the computation results obtained after

10000 time steps (the converged solution). The best performing execution configuration is with 128 threads

per block and the speed-up compared to the execution time of the multi-threaded CPU implementation is

of 19.42x.

Figure 11: Computation result (streamlines) for the patient-specific coarctation geometry

 	

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

38

12 MD-Paedigree	Cloud	Integration	

12.1 Introduction	

Cloud computing is a way to provide and to use a large number of computers connected through a real-

time communication network. In science, cloud computing is a synonym for distributed computing over a

network, and means the ability to run a program or application on many connected computers at the same

time.

In common usage, the term "the cloud" is essentially a metaphor for the Internet. Marketers have further

popularized the phrase "in the cloud" to refer to software, platforms, and infrastructure that are sold "as a

service", i.e. remotely through the Internet. Typically, the seller has actual energy-consuming servers which

host products and services from a remote location, so end-users don't have to; they can simply log on to

the network without installing anything.

The major models of cloud computing service are known as Software as a Service (SaaS), Platform as a

Service (PaaS), and Infrastructure as a Service (IaaS).

Figure 12: Cloud Architecture

Each concept will be explained in the next sub-sections.

12.1.1 Infrastructure	as	a	Service	(IaaS)	

Infrastructure as a Service is a provision model in which an organization outsources the equipment used to

support operations, including storage, hardware, servers, and networking components. The service

provider owns the equipment and is responsible for housing, running and maintaining it. The client typically

pays on a per-use basis.

12.1.2 Platform	as	a	Service	(PaaS)	

Platform as a Service (PaaS) is a way to rent hardware, operating systems, storage, and network capacity

over the Internet. The service delivery model allows the customer to rent virtualized servers and associated

services for running existing applications or developing and testing new ones.

PaaS is an outgrowth of Software as a Service (SaaS), a software distribution model in which hosted

software applications are made available to customers over the Internet. PaaS has several advantages for

developers. With PaaS, operating system features can be changed and upgraded frequently. Geographically

distributed development teams can work together on software development projects. Services can be

Application

• SaaS

• CRM, email, virtual desktop, communication, etc.

Platform

• PaaS

• Database, web server, developement tools, etc.

Infrastructure

• IaaS

• Servers, storage, load balancer, virtual machines, etc.

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

39

obtained from diverse sources that cross international boundaries. Initial and on-going costs can be

reduced by the use of infrastructure services from a single vendor rather than maintaining multiple

hardware facilities that often perform duplicate functions or suffer from incompatibility problems. Overall

expenses can also be minimized by unification of programming development efforts.

On the downside, PaaS involves some risk of "lock-in" if offerings require proprietary service interfaces or

development languages. Another potential problem is that the flexibility of offerings may not meet the

needs of some users whose requirements rapidly evolve.

12.1.3 Software	as	a	Service	(SaaS)	

Software as a Service (SaaS) is a software distribution model in which applications are hosted by a vendor

or service provider and made available to customers over a network, typically the Internet.

SaaS is becoming an increasingly prevalent delivery model as underlying technologies that support Web

services and service-oriented architecture (SOA) mature and new developmental approaches, such as Ajax,

become popular. Meanwhile, broadband service has become increasingly available to support user access

from more areas around the world.

Benefits of the SaaS model include easier administration, automatic updates and patch management,

easier collaboration, global accessibility etc.

12.2 MD-Paedigree	into	the	Cloud	

MD-Paedigree has a relatively complex architecture composed of different layers. The Cloud is one of them

(c.f. the introduction). This layer has mainly three purposes:

1. increase the computing power and/or storage capacities of the infrastructure when an activity peak

is detected;

2. increase before the activity peak the computing power and/or storage capacities of the

infrastructure (i.e. a user will need more resources than the system can provide in two weeks);

3. run experiments/pipelines on private resources which are not shared with anybody for security

reasons (i.e. really sensitive datasets).

These three cases share several specificities but are quite different in many ways. Indeed, the first case

needs a near real-time monitoring of the infrastructure usage in order to detect if more resources are

needed or if we can remove some of them. The second and third ones concern activities which are planned

and which have to be prepared in advance. In any case, all share the fact that resources have to be

allocated/removed and configured in order to be integrated into the infrastructure. This implies, then, the

ability to:

• provision/decommission virtual machines (VM) into a specific infrastructure (IaaS) ;

• configure automatically the VMs so that they can be used into the MD-PAEDIGREE infrastructure.

12.3 Virtual	Machine	provisioning	

Cloud provisioning is the allocation of a cloud provider's resources to a customer. When a cloud provider

accepts a request from a customer, it must create the appropriate number of virtual machines (VMs) and

allocate resources to support them. In this context, the term provisioning simply means "to provide".

Managing such a provisioning is unfortunately, most of the time, specific to every single cloud

infrastructure provider (IaaS). The Open Cloud Computing Interface (OCCI) [1], which was created in March

2009, aims at delivering a set of specifications through the Open Grid Forum (OGF) [2] for cloud computing

service providers. OCCI was originally initiated to create a remote management API for IaaS model based

services, allowing for the development of interoperable tools for common tasks including deployment,

autonomic scaling, and monitoring. Unfortunately, only a couple of IaaS have implemented it [3].

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

40

Many commercial and open-sourced solutions target the management of multiple IaaS clouds in order to

support multi-cloud operations in the IaaS layer. RightScale [4], which is the pioneer in this area, followed

by other companies/solutions like scalr [5], enStratus [6], kaavo [7], and SlipStream [8] offer multi-vendor

IaaS management solutions. In order to achieve this, each system supports a set of different IaaS providers

and translates higher-level management commands to the IaaS specific commands.

In the context of MD-PAEDIGREE, the Slipstream solution was chosen for different reasons. First of all, this

is a really powerful product which has already been used in many real environments. Moreover, the MAAT

team has already been in touch with most of the developers for many years: this was a great advantage for

the tests and integration of the system. Last but not least, the Slipstream developers know also very well

the EMI/gLite middleware that is used into MD-PAEDIGREE so the integration was also easier.

12.3.1 SlipStream	

SlipStream by SixSq, is a multi-cloud coordinated provisioning engine, provided as a PaaS. It provides a

multi-machine provisioning system for defining and executing deployments based on cloud provider

agnostic recipes. From within a unified web-based service, application users have the capability to deploy

different parts of their application on separate Cloud providers to accommodate various resilience and

redundancy of even running cost requirements. Slipstream uses connector architecture to communicate to

a number of open-source (i.e. OpenStack) and proprietary (i.e. Amazon AWS) IaaS providers.

12.3.1.1 Main features

As stated in the documentation [9], SlipStream main features are:

• Multi-machine Provisioning System: it allows users to define and execute deployments, based on

high-level recipes, independently from the cloud on which the recipes will be applied. Deployments

include coordination and orchestration of virtual machines, including ordering and synchronisation

of services ;

• Multi-cloud Provisioning: it supports multi-cloud deployments. This means users have the choice of

a number of cloud service providers and technologies (public and/or private) when deploying

virtual machines, from within the same SlipStream service. Furthermore, users can choose to

deploy different parts of a deployment on different cloud services or regions, such that redundant

and resilient behaviour is reached. It supports different clouds using a connector design ;

• Support continuous integration processes with continuous deployment: it encourages users to

parameterise image creation and deployment recipes, such that key parameters (e.g. software

version, package location, dependencies, inter-relationships) can be provided at runtime. This

means that it is easy to integrate SlipStream with continuous integration servers to provide a full

deployment chain ;

• Independence from specific IaaS interfaces and hypervisors: the SlipStream recipes are

independent of specific IaaS interfaces, therefore avoiding vendor lock-in, allowing you to focus on

configuration and deployment, instead of the specifics of each IaaS ;

• Community sharing platform: the SlipStream data model allows users to decide to share their

image and deployment recipes with other users, thus contributing to a community effort.

12.3.1.2 Supported Cloud

SlipStream communicates to IaaS clouds services via a connector architecture. A growing number of

connectors are available. The connectors talking to open source IaaS implementations are released under

the same open source license as the SlipStream core, while connectors to proprietary solutions are closed

source and available via a commercial license.

At the time of writing the list is the following:

• StratusLab (incl. OpenNebula): open source, available ;

• OpenStack: open source, available ;

• Abiquo: proprietary, available ;

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

41

• CloudSigma: proprietary, available ;

• Amazon EC2: proprietary, available ;

• VMWare vCloud: proprietary, available ;

• OCCI: open source, available ;

• Physical/Fixed: open source, available ;

• CloudStack: proprietary, coming soon ;

• IBM Smart Cloud Entry: proprietary, coming soon ;

• Microsoft IaaS Azure: proprietary, coming soon.

12.4 Virtual	Machines	configuration	

12.4.1 Concepts	-	systems	administrators	needs	help!	

In order to powerfully take advantage of the elasticity of the cloud platform specificities, having an

automated way of configuring VMs instances is crucial. Manual configuration is error prone and, in a

reactive environment, where VMs can be quickly created and destroyed, it is not even reasonable and

doable as the task would be too huge.

Within the Cloud, VMs can be very short-lived, as starting and creating VMs is a task happening very

frequently – either for testing something new or for adding dynamically more computation power or

service isolation/replication – the creation (depicted in the previous section) and the configuration of the

VMs have to be automatized. Especially when adding a new instance of a particular service, it has to be

configured in the exact same way as other running instances, and, if needed, it has to be automatically

taken into account by the rest of the infrastructure.

One old, and hopefully deprecated way of managing multiple servers was to create custom home made

scripts to assist the System Administrators in these huge boring tasks, but this has proven to have a lot of

drawbacks:

- Each organization is “reinventing the wheel”, there is no capitalization on the knowledge of others ;

- It is really organization-specific (non-standard) ;

- It is not easy to design and to adapt to other use cases (reusability) ;

- It is not easy to test ;

- It is very time consuming.

But this error-prone method has been superseded by the emergence of a new kind of software tailored to

address this exact use case: the configuration management tools and their ecosystem, with its best

practices and dedicated tools.

It was widely adopted due to the real needs it helps to address, and that are shared by many organizations.

12.4.2 Configuration	Management	to	the	rescue	

Efficient and productive VMs configuration is accomplished by the usage of the so-called configuration

management tools whose adoption has emerged at first for non-cloud infrastructure and has been pushed

forwards by the massive increase of Cloud deployments.

There is now a plethora of configuration management tools, from the venerable C-based CFengine [10]

born in 1993 to the recent python-based Ansible [11] available since 2012. All these tools are based on

different languages and frameworks allowing the system administrators to select a tool whose language

they are comfortable or at least familiar with.

These tools work mainly with one or more repositories where the configuration is defined and later applied

to the corresponding node/nodes. It is possible to create templates for a certain type of server and then

apply it easily to one or more nodes by just configuring the specific part.

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

42

Configuration management tools are often associated with the use of a revision control tool for keeping the

history of all the modifications, allowing to easily control, track, and rollback changes.

With automation a system administrator can manage a lot more servers than manually doable, and this will

be achieved in a much less error-prone way as everything is version controlled and automated, reducing IT

costs as well as improving infrastructure availability and reactivity. Deploying a new server is much more

predictable, quicker, and safer when automated.

After a market evaluation, puppet has been chosen due to its openness, massive adoption, active

community, great versatility (a lot of modules for managing a lot of services are already freely available),

and its ruby nature (yes this is just a matter of personal taste, but admins have to like what they do to be

efficient).

12.4.2.1 Puppet IT automation software

12.4.2.1.1 Introduction

Puppet [14] is a ruby-based Open Source software provided by Puppetlabs [12] and really open to the

community that can publicly report issues or feature requests [20] and even have some code merged in the

official code base if proven appropriate.

The code is hosted in GitHub [15] and can be easily reviewed, forked, adapted, and merged back in the

main source code tree if the changes or fixes are useful for the community and follow the official

guidelines.

Puppetlabs also provides a commercial product, Puppet Enterprise [13], offering custom proprietary high

level interfaces as well as support.

Puppet is ruby-based but the configurations are expressed in a specific declarative language allowing to

express the desired state of the target system. An extensive official documentation [16] is provided

allowing any administrator to gain a quick knowledge of the features and internals.

Puppet is made of several components working in concert to allow for a seamless management of the

infrastructure, from Hiera [17] for storing the hierarchical data corresponding to the infrastructure to

Marionette Collective for the server orchestration.

12.4.2.1.2 Architecture

Puppet’s architecture can be adapted to a lot of different workflows and deployment schemes, but a main

standard configuration deployment prevails and will be presented.

In the standard configuration, there is a central service, called the puppet master, to which every node

connects using their puppet agent to retrieve the configuration they have to apply locally.

Here is a quick overview of the anatomy of a traditional puppet run on a node - concepts and tools

presentation will follow.

- The facts are collected on the node using facter [22] ;

- The facts are sent to the puppet master ;

- Based on the facts, the puppet master computes a catalog of resources configuration having to be

applied on the agent ;

- The catalog is sent to the agent ;

- The agent applies the catalog ;

- The agent reports about the run to the puppet master.

Communication, authentication, and authorization is done using SSL certificates, everything is encrypted

before getting over the wire making puppet usable across a public network.

Configuration is organized in reusable modules that can be shared among the users’ community, even

Puppetlabs is sharing a lot of their modules with the community.

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

43

Configuration is associated to a server (nodes in the puppet world) using node manifests that includes

classes provided by modules and the appropriate classes’ configuration.

Managed servers - being physical or virtual - provide a set of facts to puppet allowing puppet to make

decision on the configuration or include them in it. Facts are server-specific variables, like hostname,

network interfaces information, kernel-related information, it can be either software-related or hardware-

relate. If needed it is even possible to manage custom facts. Facts are handled by Puppetlabs’ facter [22]

software, puppet’s closest companion.

The node’s catalog is a Directed Acyclic Graph (DAG) of the resources configuration (and their relationship)

having to be applied to a server.

Configurations are text files saved in a source code revision control tool, as in the software engineering

world, git [23] is used in MD-PAEDIGREE. It allows systems administrators to easily branch and test features

on some specific node (real or local) and to keep all the changes history.

12.4.2.1.3 Language

Puppet uses a custom declarative language to express the desired state of the system, the configuration

have to be organized in classes allowing a set of related resource configuration to agglomerate in one

logical unit, for an easy reuse and concern-separation.

In puppet’s terminology, a resource is “an independent atomic unit” with a specific type that can vary from

a simple file to a service, software package, user, or cron job. Custom types can also be created if needed.

A resource can be declared and configured using type-specific parameters as well as meta-parameters

applying to every type.

Resources are abstracted by providers from their operating system-specific implementation: marking a

package resource as having to be installed on a system will transparently call the corresponding operating

system-specific tool (yum on RedHat-like systems, aptitude or apt-get on Debian-like systems and so on)

making it relatively easy to manage a set of heterogeneous systems.

Puppet’s language also offers a number of features from conditional statements to relationship expression

– the resource order in the catalog is not the sequential order of the resource in the puppet manifests and

dependencies can be explicitly specified if needed.

12.4.2.1.4 Modules

Modules are a way of organizing a set of related-files in an easily distributable form, an example can be a

Network Time Protocol (NTP) module allowing for the configuration of a NTP server to keep the systems’

clocks synchronized. It could contain several classes, such as one for configuring a node acting as a client or

one acting as a server for the other clients.

A module can be of any sort, i.e. it can configure only specific software, or even just a file but they can also

configure a full server by gluing together different specific modules. Puppet modules aim at being

independent, reusable and adaptable in order to be easily reused for others’ needs.

Modules are mostly developed using the Puppet Language [18] but they can also include puppet libraries

developed in pure ruby (they can also embed any script or any binary created with any possible language

that the target host is able to execute).

The puppet ecosystem is very vast and lots of modules are freely available from multiple sources. Thus, to

allow for an easier module search, a forge has been put on air by Puppetlabs [19].

Instead of writing all modules from scratch, a common practice is to use a module provider to avoid re-

inventing the wheel, a lot of modules provider exists, but quality, coherence, and adaptability do vary a lot.

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

44

MD-PAEDIGREE uses mostly Example42 [21] modules as well as some Puppetlabs and various third-parties

modules, and when no module was available or complete enough some homemade modules have been

developed.

Example42 was chosen over other modules providers as they provide a set of coherent and standardized

modules, covering a wide range of functionalities with a particular and expressed goal of making them

reusable and standardized.

The main point of Example42 modules is the author attention to write quality, standardized and re-usable

modules that follow a well-designed and documented structure and leave all room possible to allow

modules’ users to adapt the module to their needs without needing to alter the module’s internals.

We also faced the case where some modules were missing a feature we required or some little bugs, and

the author was really open and reactive: we have a number of fixes and new features having been

integrated using the standard GitHub workflow (i.e. forking a project, making required changes, and

sending a pull request to the original project to get code reviewed and merged back into the main source

code tree).

All these modules covers our needs but it can be quite complicated to use different modules from multiple

providers as some modules are dependent on others and usage can largely differ (i.e. example42’s apache

module won’t allow to configure Puppetlabs’ puppet module apache Virtual Host).

When developing custom modules the community best practices are followed as much as possible, but as

the puppet ecosystem is a moving part in constant evolution keeping up dated with the latest best

practices can be time-consuming.

The main rules that are followed are to create reusable and autonomous specific modules that are

extensible.

The most complex modules that had to be developed and supported for MD-PAEDIGREE are those used to

manage the grid nodes, allowing for the creation and automatic configuration of a grid node.

The MD-PAEDIGREE grid-specific modules started as a fork of an old publicly available gLite module [24]

placed in the public domain.

The module was first ported to EMI [25] then to UMD [26] and the required fixes were added, the modules

do not have been published back to GitHub but it will soon be the case, once they will have been cleaned

for specificities and full reviewed.

Profile and roles modules can be created to add a higher level of encapsulation of modules and abstraction:

a server can include a specific role that will include multiple profiles allowing for great reusability and

following the “Don’t Repeat Yourself” (DRY) principle.

The different modules used in MD-PAEDIGREE allow for a configuration from the NTP server to the grid

node going through the package manager and shell configuration.

12.4.2.1.5 Node manifests

The node manifests are used to assign and configure classes found in modules to a specific node, they link

the classes expressed in the modules to the server promoting one anonymous generic useless server to one

specific well-crafted server design for a precise and deterministic usage.

In order to allow to represent the infrastructure organization to a hierarchy – like a global general

configuration with default package repositories and base configuration, a specific location with custom

network configuration and finally a particular node operating at this specific location – an inheritance

mechanism is provided (for nodes and classes) but it is quite buggy and has been proven quite unhelpful

regarding the representation of the infrastructure as an organized hierarchy.

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

45

This leads to the creation of Hiera, a tool allowing to express the infrastructure and its configuration in a

more robust way, while allowing a complete separation of the data and the code: the configuration is now

data-centric and can be purely expressed using the data.

12.4.2.1.6 Data centric configuration using Hiera

As clearly advertised by its name, Hiera is a hierarchical database allowing us to express the infrastructure

structure, avoiding data duplication as much as possible and allowing for a greater flexibility in modules

configuration as well as a better separation between code and data.

Without using Hiera, modules have to embed some data in them, as all the operating system’s specific

parts have to be configured accordingly to the operating system type, the location of a service

configuration file on a Debian-based system is not the same as on a RedHat-based system, so both file

paths have to be stored into the module. This forces developers to use a lot of conditionals statements

(case, if…) into the classes, making them uselessly complicated to read and maintain. Supporting a new

operating system or altering its default configuration required to edit the code which is a much more error

prone practice than editing the data and potential newly introduced bugs could affect all the infrastructure,

not only a specific subset or even only a single node.

Cleaning the manifests from all that conditional code, make them shorter, cleaner, easier to understand

and maintain.

With Hiera, the modules can separate their code from the data, and users can easily tweak the modules

without having to edit them improving module reusability.

Hiera is a quite recent player in the puppet ecosystem and the community is still testing different

possibilities of integration.

One of the interesting setups is having a node-less deployment, where all the classes and their

configuration are assigned from the data sources provided by Hiera. There is no specific per-node manifest,

only one default node manifest used by all nodes, thus the data stored in Hiera will determine what classes

to load and how to configure them. This node-less setup allows us to have an automatic configuration of

the new nodes, based on their site or role, without having to edit the puppet manifests and minimizing the

need for data editions.

Hiera configuration specifies an ordered and prioritized list of data sources, from the most specific to the

least specific: the MD-PAEDIGREE infrastructure is using mainly the following sources:

• Node-specific data source ;

• Location-specific data source ;

• Role-specific data source ;

• Common data source.

Hiera provides several query tools which allow us to retrieve information, to either merge all the results in

one set or to pick only the most specific value, making overloading of a configuration parameter really easy,

i.e. the common data source can define a default NTP server, but the location-specific data source can

provide the nearest and best NTP server for this particular location and if needed a node can have a specific

“personal” configuration.

The Hiera data sources names can contains facts’ values that will be expanded. This allows us to have data

sources correlated to a special server fact. If a data source is not present it will be skipped without failure.

Data sources are simple text files containing data that can be specified using the JSON or YAML formats. As

they are also stored as pure text files, a complete changes tracking is possible.

12.4.2.2 The Marionette Collective – making the puppet runs dancing

Historically puppet agent was intended to be running continuously on the servers, and was supposed to

contact the puppet master on a defined time interval. It was also possible to configure the agent to listen

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

46

for requests from the master asking the agent to request a new catalog and run a pass, providing a sort of a

push model, in order to force agent to run when changes were pushed to the master. The main problem of

this approach was that the agent was very memory hungry and even could be stuck eating resources.

In order to avoid this problem different models have been used and developed, from running the agent

using cron or even using a Nagios plugin, but it was quite hack-ish or at least less feature-full (as an

example, using cron no kick option was available). This leads an active community member (R.I.Pienaar

[27]) to develop a tool intended to address this problem as well as dealing with other distributed and/or

wide infrastructure-related use cases: the Marionette Collective, a client/server software which allows

administrators to orchestrate and inventory a set of servers.

The Marionette Collective, mcollective, is built around some modern concepts like publishers/subscribers

using a Message Bus and designed in a modular way with a plugin-based extension system. Multiple plugins

are provided by default. This allows us to execute different kinds of task on remote servers, such as listing

available servers or issuing Nagios NRPE commands. The main plugin that is interesting with puppet is the

puppet plugin, allowing us to launch and monitor puppet runs on remote servers. It even allows operators

to filter the servers list using facts gathered from nodes or classes that got assigned to nodes. As an

example it is possible to request a puppet run on all the Debian-based nodes having the NTP class included.

This plugin also provides a way of ensuring that the puppet master won’t be taken down due to too much

simultaneous connections of servers: it can be told that only 10 concurrent access are permitted, the plugin

will ensure that no more than 10 servers are running a puppet pass in parallel.

The mcollective agent runs as a service and is also a lot lighter than the puppet agent service, even if some

important fixes have been done lately to make it less resource hungry.

The Marionette Collective was found so relevant to the puppet community that Puppetlabs did even hire

the original developer, financing the support and active development of mcollective and the kick option

was removed from the puppet codebase. Finally, the original author, R.I.Pienaar, became the software

architect of the aforementioned Hiera database.

12.4.2.3 Puppet/mcollective drawbacks/problems

Nonetheless, using puppet, Hiera and mcollective can also cause problems, as it becomes quite easy to

propagate an error impacting every server of the infrastructure, on twitter, @devops_borat depicted this

using the humoristic formula:

“To make error is human. To propagate error to all server in automatic way is
#devops.”

 The ruby nature of puppet and mcollective (Hiera is quite different, it is clojure-based requiring to run in a

Java Virtual Machine), can also be problematic as the ruby world tends to be very reactive and the

production-grade operating systems tends to have outdated libraries (called gems) or even non-packaged

at all in some cases. In order to ease things for the users, Puppetlabs provides public packages repositories

but it is currently required to install some specific gems on the server, and those gems are out of the

control of the distribution’s package manager.

Modules publicly available have not the same quality and sometimes it is difficult to make them

interoperate as two modules of different providers could depend on two different dependencies having the

same name. Therefore, evaluating, selecting, integrating, and updating modules can be a quite complex

and cumbersome task.

In order to prevent all the related problems, it is really important to have a strong (and of course

automated) way of understanding if the agent really does apply the desired configuration without any side

effects. A first step towards a more sustainable infrastructure can be achieved by using different

environment (production, development) allowing for the separation of development from production code.

It also has to be enforced by another practice adopted and adapted from the software engineering world,

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

47

more specifically from the Test Driven Development movement: viewing, managing, using infrastructure as

code and testing it proactively, extensively, and thoroughly.

12.4.3 Testing	

In order to setup a trustful deployment of a Virtual Machine on the Cloud that can be used with confidence,

it is essential to understand if the configured computer can address the need it is supposed to. This can be

accomplished by using automated test assessing the reliability and accuracy of a specific module or node

configuration.

In order to cover the most possible bugs, tests have to operate at different levels, it is possible to do unit

testing of modules to ensure that the atomic parts of the module are working right, as well as some sort of

integration tests using serverspec and Vagrant [28].

Some of the modules publicly available are already doing some unit tests, mostly using rspec and

commonly used ruby testing tools, but test quality goes from absent, incomplete, outdated to an almost

exhaustive coverage.

Unit tests help a lot as they allow us to understand quickly if all the parts of a module behave as expected

in a timely efficient manner. But in order to validate a full node configuration, the complete assessment of

server integration is required, which consists of more complex tests.

The final configuration of a node can be tested using the serverspec tool to apply some Behaviour Driven

Development (BDD) and Test Driven Development (TDD) principles to server configuration and

infrastructure testing.

Serverspec tests allow us to express a server configuration, the tests will validate if the server matches its

expected behaviour. Checks are run through a Secure Shell (ssh) remote connection and will assess that the

puppet configuration provides the expected result. As a side effect it also documents the server’s

configuration.

Vagrant is a tool that was developed to easily manage local virtual machines creation and automatic

configuration, providing an automated way to efficiently create a local development or test environment

perfect for disposable re-use.

Initially, Vagrant aimed at deploying machines only locally, using a VirtualBox provider, but due to its

plugin-based architecture offering in a great flexibility and extensibility, a large amount of virtual machines

providers have been developed by the community giving administrators the possibility to easily create

virtual machines on VMWare, OpenStack, and other cloud providers.

For MD-PAEDIGREE, the nodes’ configuration is tested using serverspec and Vagrant makes testing theme

in local virtual machines easier. Vagrant allows to effectively setup and teardown a virtual machine to

ensure that tests are done on a clean production-like environment.

By using a Continuous Integration tool such as Jenkins [29] it will even be possible to launch the tests on

every push to the puppet repository to easily track what any change might cause.

12.4.4 Conclusion	

The usage of configuration management tools helps increasing the productivity as well as the overall

quality of service.

System administrators are shifting to a developer role, because the infrastructure is now managed as a

code (versioning, testing, automation…), and they have to interact, communicate, and exchange actively

with the developers to fix the gap between development and operations, making the deployments on the

production infrastructure more reliable, easy, and predictable. Using tools is one aspect of this emerging

cultural and technical movement called devops – a compound word made of development and operations –

but one of the most important thing, at least as important as the tools used, is ensuring that there is a good

and frequent communication between the developers and the operators to ensure that the infrastructure

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

48

meets its applications needs. The infrastructure has also to be taken into account during the development

phase to ensure that the move to production will be a smooth as possible. Obviously system and users’

monitoring reports are also a key to the overall success, as they assess if the infrastructure and applications

are operating as intended.

Puppet creates a development environment that is as close as possible to the production environment,

reducing the window for unseen bugs. Together with Vagrant, it even allows developers to have a complete

and coherent local development environment as close as possible to the production one.

Puppet can be seen as an infrastructure documentation as it represents the desired state of the

infrastructure, the use of Hiera to store data will only enforce such a view making it very useful to

determine what is used for a node or which node is used for a task.

Using tools such as puppet, provide a way of managing the heterogeneous individual servers like a

coherent heard of anonymous individuals allowing for an easy and smooth growth and enforcing the

infrastructure sustainability, reliability, and resilience.

It is also a great help in tracking down and reacting to problems, since it leads to a new iteration of

infrastructure configuration and management improvements.

As all this tools are meant to be automated, they could easily integrate in a continuous integration/delivery

setup, having tests automatically played in a production-like virtual machine: if tests are successful there is

an automated deployment of the build to the development infrastructure.

Additionally, to reduce the management costs and improving the infrastructure reliability, one of the target

goals is to be able to handle automatically all sorts of system failures, leading to automatically commission

or decommission nodes, according to the infrastructure requirements. Another goal is to have the smallest

possible infrastructure downtime and maximum adaptability to a required usage peek/growth allowing for

a seamless and elastic adaptation to the infrastructure workload.

13 Self-assessment	Criteria	
13.1.1 Self-assessment	estimation	

14.1 The grid network is installed and configured for MD-Paedigree

Upper limit : 100% within Month 24 Lower limit: 75% within Month 24 100%

The grid is installed and functional as needed

14.2 Load Capacity analysis is provided

Upper limit : 100% within Month 24 Lower limit: 75% within Month 24 75%

14.3 The number of gateway corresponds to what the analysis defines / the workload is

supported / the application of WP15 and 16 are compatible with the system.

Upper limit : 100% within Month 24 Lower limit: 50% within Month 24 75%

Enough Gateways are installed for the platform optimal operating but important gateways

are not yet installed.

WP15 and WP16 tools are not fully in the infostructure platform environment.

14.4 Cloud provider and APIs have been chosen and qualified to be integrated the MD-Paedigree

solution / GPU computing Technology has been chosen for the GPU processing layer.

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

49

Upper limit : 100% within Month 12 Lower limit: 75% within Month 12 100%

Cloud API has been chosen and tested.

CPU technology is chosen and ready to run for some modelling experiments.

14.5 All the application from WP15-16 can be deployed onto the cloud / the imaging calculation

solution from WP15-16 can run using GPU.

Upper limit : 100% within Month 12 Lower limit: 50% within Month 12 70%

Cloud infrastructure and machine provisioning are ready to use.

Tests from WP15-16 are still expected.

GPU processing has significant result on image analysis.

14.6 ADP is able to decompose its dataflow management to be able to manage data distributed

as it is in the system.

Upper limit : 60% within Month 24 Lower limit: 40% within Month 24

Removed

14.7 ADP is decomposable enough to run onto the grid using calculation distribution and

parallelization abilities.

Upper limit : 60% within Month 24 Lower limit: 40% within Month 24

Removed

14.6

Replaces

old 14.6

and 14.7

EXAREME is integrated into the system providing distributed processing and parallelization of

resourse/time consuming algorithms

Upper limit : 3 within Month 24 Lower limit: 2 within Month 24 2.5

1. Design and develop a Complex Dataflow Processing Engine with native UDF support (madIS

integrated with ADP)

2. Develop complex UDFs to be used in SQL-based dataflows executed by the Complex

Dataflow Processing Engine.

3. Provide distributed processing and parallelization of resourse/time consuming algorithms

4. Integration with the platform

14.7

Ex 14.8

VPH-Share recommendations that the solutions have to follow are defined for all the

applications

Upper limit : 100% within Month 24 Lower limit: 75% within Month 24 50%

MD-Paedigree reuse directly some part of VPH-Share project. However, VPH-Share constraints

for applications have not been clearly defined.

14.8

Ex 14.9

All the applications that are developed for MD-Paedigree (in particular the ones from WP15-

16) respect the VPH-Share defined recommendations and will manage to use Pandora

security, privacy and integration functionalities to be servable as a service Through the

gateways.

Upper limit : 60% within Month 24 Lower limit: 40% within Month 24 30%

Different applications have put efforts to integrate with Pandora services. However, most of

them are not integrated as services.

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

50

13.1.2 Corrective	action	

A special attention will be paid to the correction on self-assessment criteria 14.7 and 14.8 in order to

restore a status that is up to the level needed. Synchronization meetings with VPH-Share members to

clearly define constraints on application will be introduced during the agile methodology process (cf D17.1)

and a particular attention will be put on application integration as a service for all the developed

applications.

14 Conclusion	
Alpha version implements most of the functionalities, in line with the original estimated advancement. All

partners work in concordance to provide the most adapted and usable system to physicians. Current

system is well sized for the project purpose but some non-technical aspects impacts the original

assumption that all gateways could be stored on OPBG PCDR system. Cloud and GPU integrations are done

and ready to be used, but no funds have been planned for infrastructure empowerment, so the consortium

will have to find a way to provide these resources if modelling challenges are submitted to the system.

The recent decision to use agile methodology, as described in D17.1, will involve the user in the

development choices and testing, resulting in better communication and understanding between the

infostrucure group, physician and modellers. This better communication and synchronisation between

software providers and users should improve the project’s efficiency, resulting in a user-oriented system

ready to be used.

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

51

Annexe	1	–	GPU	Publications	
The methods, algorithms and implementations described above have lead to the publication of the

following papers:

1. Vizitiu, A., Itu, L.M., Lazar, L., Suciu, C. Double precision stencil computations on Kepler GPUs, Proc. of the

18th Inter. Conf. on System Theory, Control and Computing - ICSTCC 2014, Sinaia, Romania, October 15-17,

2014.

2. Vizitiu, A., Itu, L.M., Nita, C., Suciu, C. Optimized Three-Dimensional Stencil Computation on Fermi and

Kepler GPUs, 18th IEEE High Performance Extreme Computing Conference, Waltham, MA, USA, Sept. 9-11,

2014.

3. Itu, L. M., Sharma, P., Georgescu, B., Kamen, A., D., Suciu, C., Comaniciu, D. Model Based Non-invasive

Estimation of PV Loop from Echocardiography, Proc. of the 36th Annual Inter. Conf. of the IEEE Engineering

in Medicine & Biology Society - EMBC 2014, Chicago, USA, August 26-30, 2014.

4. Itu, L. M., Suciu, C. A method for modeling surrounding tissue support and its global effects on arterial

hemodynamics, IEEE International Conference on Biomedical and Health Informatics, Valencia, Spain, June

1-4, 2014.

5. Nita, C., Chen, Y., Lazar, L., Mihalef, V., Itu, L.M., Viceconti, M., Suciu, C., GPU Accelerated Finite Element

Analysis of Trabecular Bone Tissue, Proc. of the Virtual Physiological Human Conference, Trondheim,

Norway, Sept 9-12, 2014.

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

52

Annexe	2	–	GPU	References	
[Alastruey et al., 2009] J. Alastruey, S. Nagel, B. Nier, A. Hunt, P. D. Weinberg, and J. Peiro, “Modelling pulse

wave propagation in the rabbit systemic circulation to assess the effects of altered nitric oxide synthesis”,

Journal of Biomechanics, vol. 42, pp. 2116–2123, 2009.

[Astorino et al., 2012] M. Astorino, J. Becerra Sagredo, and A. Quarteroni, “A modular lattice Boltzmann

solver for GPU computing processors”, SeMA journal, vol. 59, pp. 53-78, 2012.

[Bell et al., 2008] Bell N, Garland M. Efficient sparse matrix-vector multiplication on CUDA. NVIDIA Technical

Report NVR-2008-004. 2008.

[Bessems, 2008] D. Bessems, “On the propagation of pressure and flow waves through the patient-specific

arterial system”, PhD Thesis 2008, Techincal University of Eindhoven, Netherlands.

[Bouzidi et al., 2001] M. Bouzidi, M. Firdaouss, and P. Lallemand, “Momentum transfer of a Boltzmann-

Lattice fluid with boundaries,” Physics of Fluids, vol. 13, pp. 452-3459, 2001.

[Breiman, 2001] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32, 2001.

[Formaggia et al., 2013] L. Formaggia, A. Quarteroni, and C. Vergara, “On the physical consistency between

three-dimensional and one-dimensional models in haemodynamics”, Journal of Computational Physics, vol.

244, pp. 97–112, 2013.

[Grahn et al., 2011] Grahn, H.; Lavesson, N.; Lapajne, M. H. & Slat, D. (2011), CudaRF: A CUDA-based

implementation of Random Forests., in Howard Jay Siegel & Amr El-Kadi, ed., 'AICCSA' , IEEE, , pp. 95-101

[Hestenes et al., 1952] M. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J.

Res. Nat. Bur. Stand. 49 (1952) 409–436

[Kirk et al., 2010] D. Kirk, and W.M. Hwu, Programming Massively Parallel Processors: A Hands-on

Approach, London: Elsevier, 2010.

[Latt, 2007] J. Latt, “Hydrodynamic limit of lattice Boltzmann equations”, PhD Thesis, Universite de Geneve,

Geneve, Switzerland, 2007.

[Liu et al., 2007] Y. Liu, C. Dang, M. Garcia, H. Gregersen, and G. S. Kassab, “Surrounding tissues affect the

passive mechanics of the vessel wall: theory and experiment”, American Journal of Physiology - Heart and

Circulatory Physiology, vol. 293, pp. 3290-3300, 2007.

[Nita et al., 2013] C. Niţă, L. M. Itu, and C. Suciu, “GPU Accelerated Blood Flow Computation using the

Lattice Boltzmann Method”, IEEE High Performance Extreme Computing Conference, pp. 1-6, Sept. 2013.

[Olufsen et al., 2000] M. Olufsen, C. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, and J. Larsen, “Numerical

simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions”,

Annals of Biomedical Engineering, vol. 28, pp. 1281-1299, 2000.

[Ortega, 1988] 5. Ortega, J. Introduction to parallel and vector solution of linear systems, Plenum Press,

1988.

[Phillips et al., 2010] E. Phillips, and M. Fatica, “Implementing the Himeno benchmark with CUDA on GPU

clusters”, IEEE Intern. Parallel & Distributed Processing Symposium, pp. 1-10, April 2010.

[Ringel et al., 2007] R.E. Ringel, and K. Jenkins, “Coarctation of the aorta stent trial (coast)”, 2007,

http://clinicaltrials.gov/ct2/show/NCT00552812.

[Saad, 2003] 2. Saad Y, editor. Iterative methods for sparse linear systems. 2nd ed. Philadelphia: Society for

Industrial and Applied Mathematics; 2003.

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

53

[Shimokawabe et al., 2011] T. Shimokawabe, T. Aoki, T. Takaki, T. Endo, A. Yamanaka, N. Maruyama, A.

Nukada, and S. Matsuoka, “Peta-scale phase-field simulation for dendritic solidification on the TSUBAME

2.0 supercomputer”, Intern. Conf. for High Performance Computing, Networking, Storage and Analysis, pp.

13-18, 2011.

[Succi, 2001] S. Succi, The Lattice Boltzmann Equation - For Fluid Dynamics and Beyond. New York: Oxford

University Press, 2001.

[van Rietbergen, 2001] 4. van Rietbergen, B. 2001. "Micro-FE analyses of bone: state of the art." Adv Exp

Med Biol no. 496:21-30.

[Verschoor et al., 2012] 6. Verschoor, M., Jalba, A. Analysis and Performance Estimation of the Conjugate

Gradient Method on Multiple GPUs, Parallel Computing 38 (2012), pp. 552-575

[Zaspel et al., 2013] P. Zaspel, M. Griebel, “Solving incompressible two-phase flows on multi-GPU clusters”,

Computers & Fluids 2012, vol. 80, pp. 356-364, 2013.

[Zhang, 2000] Zhang, D. 2000. Applying machine learning algorithms in software development, In Proc. of

Monterey Workshop on Modeling Software System Structures, Santa Margherita Ligure, Italy, pp. 275–285.

[Zou et al., 1997] Q. Zou, and X. He, “On pressure and velocity boundary conditions for the Lattice

Boltzmann BGK model,” Physics of Fluids, vol. 9, pp. 1591-1598, 1997.

	 	

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

54

Annexe	3	–	CLOUD	References	
	

[1] OpenCloud Computing Interface (OCCI) : http://occi-wg.org/

[2] Open Grid Forum: http://www.ogf.org/

[3] OCCI implementations: http://occi-wg.org/community/implementations/

[4] Rightscale: http://www.rightscale.com/

[5] Scalr: http://www.scalr.com/

[6] enStratus: https://www.enstratius.com/

[7] kaavo: http://www.kaavo.com/

[8] SlipStream: http://sixsq.com/products/slipstream.html

[9] SlipStream doc.: https://slipstream.sixsq.com/documentation

[10] CFengine: http://cfengine.com/

[11] Ansible: http://www.ansible.com

[12] Puppetlabs: https://puppetlabs.com

[13] Puppet enterprise: https://puppetlabs.com/puppet/puppet-enterprise

[14] Puppet open source: https://puppetlabs.com/puppet/puppet-open-source

[15] Puppet source code: https://github.com/puppetlabs/puppet

[16] Puppet documentation: https://docs.puppetlabs.com

[17] Hiera: http://projects.puppetlabs.com/projects/hier

[18] Puppet Language: http://docs.puppetlabs.com/puppet/latest/reference/lang_summary.html

[19] Puppet Forge: https://forge.puppetlabs.com

[20] Puppet bugs tracker: https://tickets.puppetlabs.com

[21] Example42: http://example42.com

[22] Facter: https://puppetlabs.com/facter

[23] Git: http://git-scm.com

[24] Puppet gLite module: https://github.com/cristim/glider-glite

[25] European Middleware Initiative (EMI): http://www.eu-emi.eu/

[26] Unified Middleware Distribution (UMD): http://repository.egi.eu/category/umd_releases/

[27] R.I. Pienaar : http://www.devco.net

[28] Vagrant: http://www.vagrantup.com/

[29] Jenkins: http://jenkins-ci.org

	 	

D14.1.Ground Truth Infrastructure Setup Report MD-Paedigree - FP7-ICT-2011-9 (600932)

55

	

